ICU SURVIVAL ANALYSIS

Yuling Gu Alice Guo Tam Nguyen

Mar 18, 2020

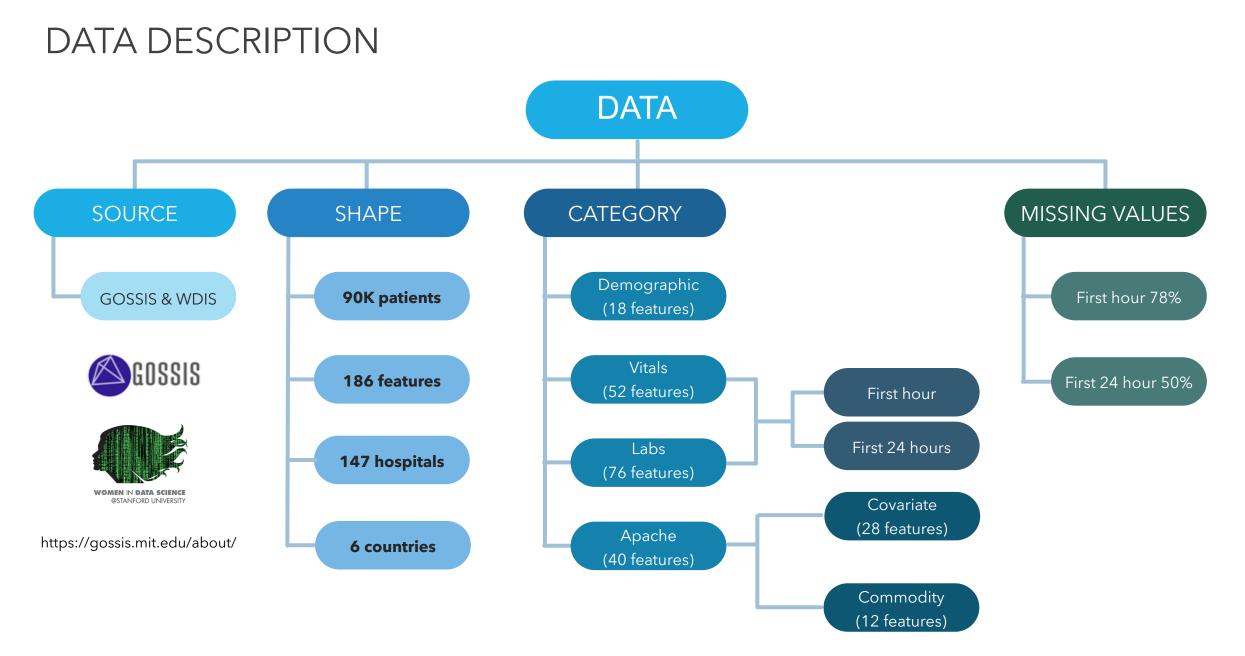
OUTLINE

- Business Use Case
- Dataset
- EDA & Approach
- Modeling
- Model Comparison
- Conclusion
- Lesson Learned

BUSINESS USE CASE

- In clinical practice, estimates of mortality risk can be useful in triage and resource allocation
- Help hospital to:
 - determine appropriate levels of care
 - prepare discussions with patients and their families around expected outcomes
- Help payers to know how the health outcomes of their policyholders will be affected, so that payers can identify useful policies

PROBLEM STATEMENTS


- MIT's GOSSIS community initiative is seeking an efficient way to address the problems with existing severity of illness systems:
 - They often lack generalizability beyond the patients on whom the models were developed, and
 - The models are often proprietary, costly to use (APACHE scoring system...), and suffer from opaque algorithms.

OBJECTIVES

- Create a model that uses data from the first 24 hours of intensive care to predict patient survival with:
 - Better prediction probability of death (as compared to apache_4a_icu_prob, apache_4a_hospital_prob)
 - Minimize apache features
 - Transparent (easy to explain)
 - Generalizability
 - Less complexity

EDA & APPROACH

- Data Cleaning &
 Feature Engineering
- Initial Findings
- Challenges
- Approach
- Assumption

DATA CLEANING | DEMOGRAPHIC

FEATURES

percent_missing

	<u> </u>
hospital_admit_source	23.3
age	4.6
bmi	3.7
weight	3.0
ethnicity	1.5
height	1.5
icu_admit_source	0.1
gender	0.0
elective_surgery	0.0
hospital_death	0.0
hospital_id	0.0
patient_id	0.0
icu_id	0.0
icu_stay_type	0.0
icu_type	0.0
pre_icu_los_days	0.0
readmission_status	0.0
encounter_id	0.0

CLEANING & IMPUTE

- Drop features:
 - that add no value to the model with std = 0: readmission_status
 - encounter id (repeat with patient id)

Replace negative values with 0:

- pre_icu_los_days (the length of stay (days) of the patient between hospital admission and unit admission)
- Impute missing values: (Mice imputer & most frequent)
 - Mice imputer *: age, height, weight
 - calculate BMI based on height, weight and impute missing value for BMI
 - Most frequent value:
 - ethnicity
 - Impute either hospital_admit_source or icu_admit_source, based on the other: most frequent category for each group.

DATA CLEANING | VITALS - LABS

FEATURES

	percent_missing	
h1_diasbp_invasive_max	81.7	
h1_diasbp_invasive_min	81.7	
h1_sysbp_invasive_min	81.7	
h1_sysbp_invasive_max	81.7	
h1_mbp_invasive_min	81.6	
h1_mbp_invasive_max	81.6	
d1_diasbp_invasive_min	74.1	
d1_diasbp_invasive_max	74.1	
d1_sysbp_invasive_max	74.1	d1_n
d1_sysbp_invasive_min	74.1	d1_r
d1_mbp_invasive_max	73.9	d1_di
d1_mbp_invasive_min	73.9	d1_di
h1_temp_max	23.7	d1_s
h1_temp_min	23.7	d1_sy
h1_mbp_noninvasive_max	9.9	
h1_mbp_noninvasive_min	9.9	
h1_diasbp_noninvasive_max	8.0	
h1_diasbp_noninvasive_min	8.0	
h1_sysbp_noninvasive_min	8.0	
h1_sysbp_noninvasive_max	8.0	
h1_mbp_max	5.1	
h1_mbp_min	5.1	
h1_resprate_max	4.8	
h1_resprate_min	4.8	
h1_spo2_max	4.6	
h1_mbp_min h1_resprate_max h1_resprate_min	5.1 4.8 4.8	

VITALS

h1_spo2_min	4.6
h1_diasbp_max	3.9
h1_diasbp_min	3.9
h1_sysbp_max	3.9
h1_sysbp_min	3.9
h1_heartrate_max	3.0
h1_heartrate_min	3.0
d1_temp_min	2.5
d1_temp_max	2.5
d1_mbp_noninvasive_max	1.6
d1_mbp_noninvasive_min	1.6
d1_diasbp_noninvasive_min	1.1
d1_diasbp_noninvasive_max	1.1
d1_sysbp_noninvasive_min	1.1
d1_sysbp_noninvasive_max	1.1
d1_resprate_max	0.4
d1_resprate_min	0.4
d1_spo2_max	0.4
d1_spo2_min	0.4
d1_mbp_max	0.2
d1_mbp_min	0.2
d1_diasbp_max	0.2
d1_diasbp_min	0.2
d1_sysbp_max	0.2
d1_sysbp_min	0.2
d1_heartrate_min	0.2
d1_heartrate_max	0.2

percent_missing				
-	h1_bilirubin_max	92.3	h1_hemaglobin_max	
	h1_bilirubin_min	92.3	h1_sodium_max	
	h1_lactate_max	92.0	h1_sodium_min	
	h1_lactate_min	92.0	h1_potassium_max	
	h1_albumin_min	91.4	h1_potassium_min	
	h1_albumin_max	91.4	d1_lactate_min	
	h1_pao2fio2ratio_min	87.4	d1_lactate_max	
	h1_pao2fio2ratio_max	87.4	d1_pao2fio2ratio_max	
	h1_arterial_ph_min	83.3	d1_pao2fio2ratio_min	
	h1_arterial_ph_max	83.3	d1_arterial_ph_min	
	h1_hco3_max	83.0	d1_arterial_ph_max	
	h1_hco3_min	83.0	d1_arterial_pco2_max	
	h1_arterial_pco2_max	82.8	d1 arterial pco2 min	
	h1_arterial_pco2_min	82.8	d1 arterial po2 max	
	h1_wbc_max	82.8	d1 arterial po2 min	
	h1_wbc_min	82.8	d1 inr min	
	h1_arterial_po2_max	82.8	d1 inr max	
	h1_arterial_po2_min	82.8		
	h1_calcium_min	82.7	h1_inr_max	
	h1_calcium_max	82.7	h1_inr_min	
	h1_platelets_min	82.5	d1_bilirubin_min	
	h1_platelets_max	82.5	d1_bilirubin_max	
	h1_bun_min	81.9	h1_glucose_max	
	h1_bun_max	81.9	h1_glucose_min	
	h1_creatinine_min	81.7	d1_albumin_min	
	h1_creatinine_max	81.7	d1_albumin_max	
	h1_hematocrit_min	80.1	d1_hco3_min	
	h1_hematocrit_max	80.1	d1 hco3 max	

79.7	d1_platelets_min
79.2	d1_platelets_max
79.2	d1_wbc_max
78.6	d1_wbc_min
78.6	d1_calcium_min
74.6	d1_calcium_max
74.6	d1_hemaglobin_max
72.0	d1_hemaglobin_min
72.0	d1_hematocrit_max
65.6	d1_hematocrit_min
65.6	d1_bun_max
64.6	d1_bun_min
64.6	d1_sodium_max
64.6	d1_sodium_min
64.6	d1_creatinine_max
63.2	d1_creatinine_min
63.2	d1_potassium_min
63.2	d1_potassium_max
	d1_glucose_max
63.2	d1_glucose_min
58.5	
58.5	
57.4	

57.4

53.5

53.5

16.4

16.4

LABS

14.7

14.7 14.4

14.4

14.2

14.2

13.2

13.2

12.7

12.7

11.5

11.5

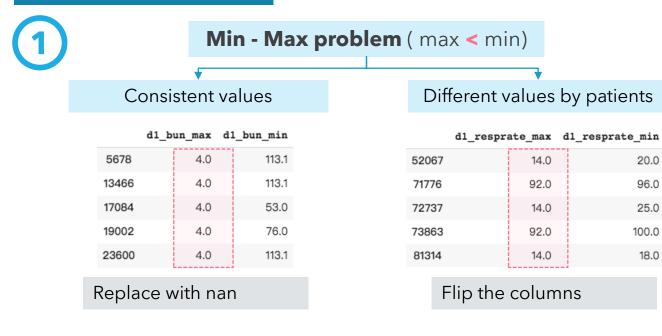
11.1

11.1

11.1

11.1

10.5


10.5

6.3

6.3

DATA CLEANING | VITALS - LABS

CLEANING & IMPUTE

Drop features

- Multiple measurements for same indicator, i.e. 'mbp': mean blood pressure.
 - ('d1_mbp_max','d1_mbp_min'); ('d1_mbp_invasive_max','d1_mbp_invasive_min'); ('d1_mbp_noninvasive_max','d1_mbp_noninvasive_min')
- Drop first hour data (more than 80% of missing values)

18.0

Impute & add in new features

- **Impute** missing values for:
 - d1 features (max and min) based on the most frequent values of patients in the same apache_3j_bodysystem group
- **Add features:**
 - calculated the difference between:
 - max and min value for every indicator, i.e. : 'diff sodium d1'='d1 sodium max' -'d1 sodium min';
 - 1st hour and 1st 24 hours, i.e.: 'diff_max_sodium_1hr_24hr', 'diff min sodium 1hr 24hr'
 - pulse pressure = sysbp diasbp (systolic blood pressure) - (diastolic blood pressure)
 - the severity of patients: based on the number of missing features

DATA CLEANING APACHE (ACUTE PHYSIOLOGY AND CHRONIC HEALTH EVALUATION)

FEATURES

	percent_missing	gcs_u
pao2_apache	77.3	goo_u ma
fio2_apache	77.3	heart
ph_apache	77.3	
paco2_for_ph_apache	77.3	immur
paco2_apache	77.3	intub
bilirubin_apache	63.4	solid_tumo
albumin_apache	59.3	ly
urineoutput_apache	53.4	I
wbc_apache	24.0	hep
hematocrit apache	21.7	diabe
bun_apache	21.0	ulabe
creatinine apache	20.6	ar
sodium_apache	20.3	ventil
glucose_apache	12.0	apache_
apache 4a icu death prob	8.7	
apache_4a_hospital_death_prob		
temp_apache	4.5	j
	4.5	
gcs_verbal_apache		
gcs_eyes_apache	2.1	
gcs_motor_apache	2.1	
apache_3j_bodysystem	1.8	
apache_2_bodysystem	1.8	
apache_2_diagnosis	1.8	
resprate_apache	1.3	
apache_3j_diagnosis	1.2	

gcs_unable_apache	1.1
map_apache	1.1
heart_rate_apache	1.0
immunosuppression	0.8
intubated_apache	0.8
solid_tumor_with_metastasis	0.8
lymphoma	0.8
leukemia	0.8
cirrhosis	0.8
hepatic_failure	0.8
diabetes_mellitus	0.8
aids	0.8
arf_apache	0.8
ventilated_apache	0.8
apache_post_operative	0.0

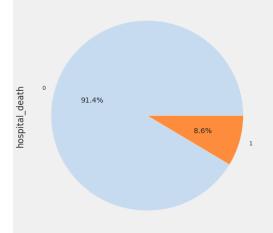
APACHE:

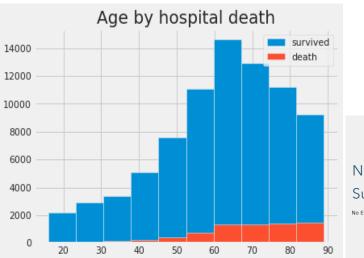
severity score and mortality estimation tool in US

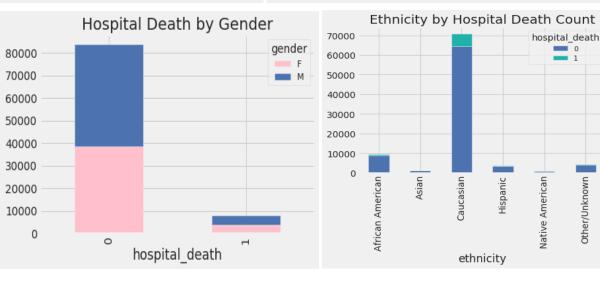
CLEANING & IMPUTE

Drop features:

- apache_2_diagnosis (the APACHE II diagnosis for the ICU admission)
- apache_2_bodysystem (Admission diagnosis group for APACHE II), due to high correlation between apache II and apache III.

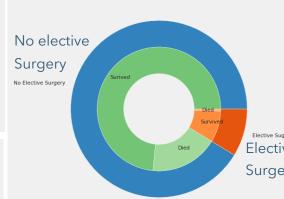

Impute:


- apache score by using 1st 24 hours min, max values for the same measurements
- Replace negative value of apache_icu_death_prob with 0
- Create 'Undefined' category for missing values in apache_3j_bodysystem
- Encode:
 - apache_3j_diagnosis: The APACHE III-J sub-diagnosis code which best describes the reason for the ICU admission, i.e.
 - 203: Aspiration pneumonia
 - '203.01': Arrest, respiratory (without cardiac arrest)


INITIAL FINDINGS (1)

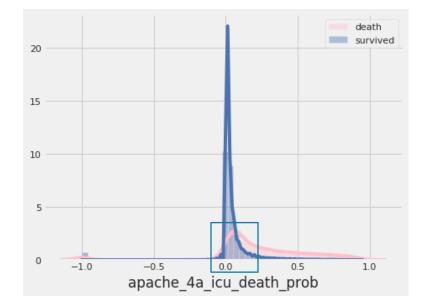
Age, Gender, Ethnicity distribution with Hospital Death

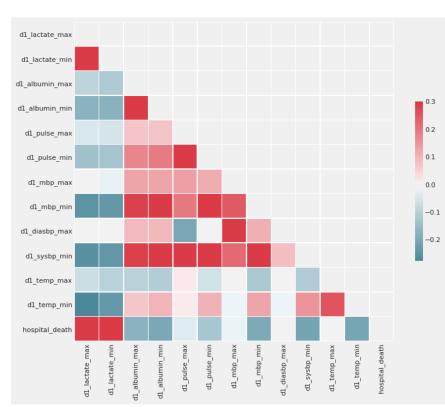
Distribution of people Survivied/Died in 24 hours

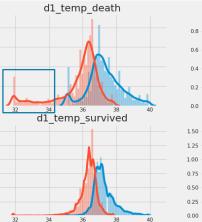


icu_admit_source count death_rate

0	Other ICU	859	14.4
1	Other Hospital	2358	13.4
2	Floor	15611	13.4
3	Accident & Emergency	54060	8.6
4	Operating Room / Recovery	18713	3.7


hospital_admit_source count death_rate


	0	Step-Down Unit (SDU)	1131	18.8
	1	Other ICU	233	15.0
	2	Other	7	14.3
	3	Floor	8055	13.9
	4	Other Hospital	1641	13.5
^{ugery} ive	5	Acute Care/Floor	1910	10.5
ery	6	Direct Admit	6441	10.3
	7	Emergency Department	36962	8.7
	8	ICU	35	8.6
	9	ICU to SDU	45	6.7
	10	Chest Pain Center	134	6.0
	11	Recovery Room	2896	3.6
	12	Operating Room	9787	3.5
	13	PACU	1017	3.0
	14	Observation	10	0.0



Elective Surgery by Hospital Death

	INITIAL	FIND	ING	S (2)
_	no_missingFeatures	total_patients	survived	death	death_rate
0	0.0	25.0	14.0	11.0	44.0
1	10.0	882.0	681.0	201.0	22.8
2	20.0	3673.0	3004.0	669.0	18.2
3	30.0	8196.0	6944.0	1252.0	15.3
4	40.0	13790.0	11688.0	2102.0	15.2
5	50.0	22863.0	19432.0	3431.0	15.0
6	60.0	35578.0	30762.0	4816.0	13.5
7	70.0	58977.0	52744.0	6233.0	10.6
8	80.0	77748.0	70732.0	7016.0	9.0
9	90.0	83446.0	76116.0	7330.0	8.8
10	100.0	87658.0	80057.0	7601.0	8.7
11	110.0	91101.0	83241.0	7860.0	8.6

0.8

0.6

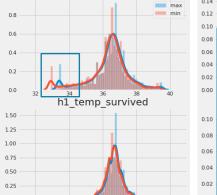
0.4

0.2

0.0

1.50

1.25


1.00

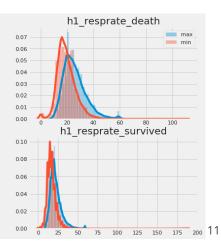
0.75

0.50

0.25

0.00

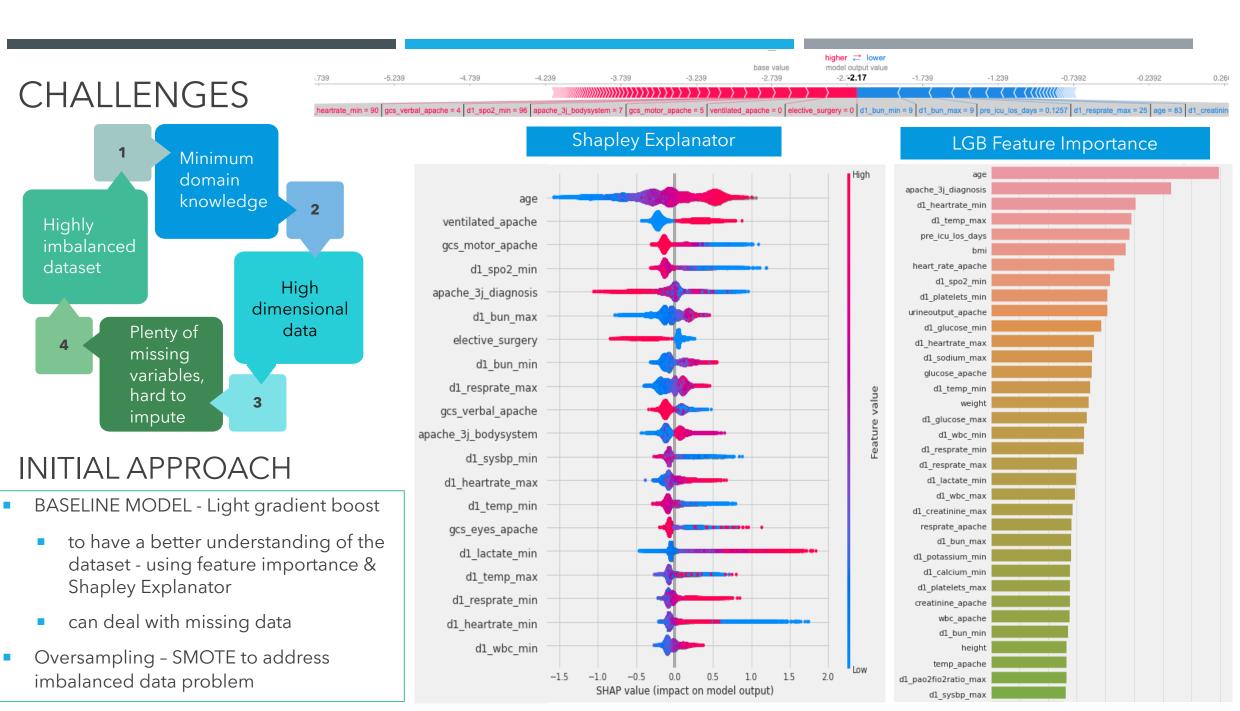
36


38

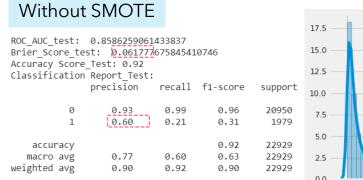
32

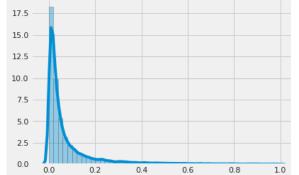
34

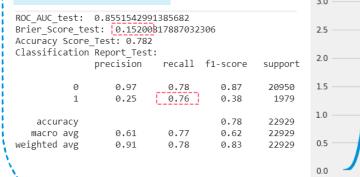
h1_temp_death

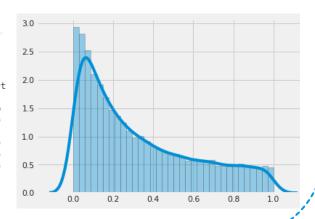


apache_3j_bodysystem count death_rate

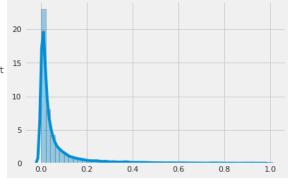

Cardiovascular	29999	8.0
Neurological	11896	7.9
Sepsis	11740	15.8
Respiratory	11609	11.2
Gastrointestinal	9026	7.4
Metabolic	7650	1.5
Trauma	3842	6.7
Genitourinary	2172	6.2
Musculoskeletal/Skin	1166	4.7
Hematological	638	9.1
Gynecological	313	0.6

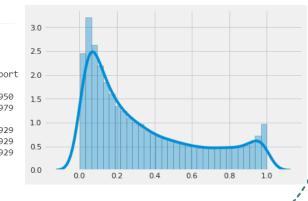

100


SMOTE – COMPUTATION EXPENSIVE BUT DOES NOT RESOLVE PROBLEM!


Impute Approach: Logistic Regression

With SMOTE


Binning Approach: Logistic Regression


Without SMOTE

ROC AUC: 0.8829942317966332 Brier Score: 0.0571302837125455 Accuracy Score_Test: 0.926 Classification Report Test: precision recall f1-score support 0.94 0.98 0.96 20950 0.65 0.30 0.41 1979 1 accuracy 0.93 22929 macro avg 0.79 0.64 0.69 22929 0.91 0.93 22929 weighted avg 0.91

With SMOTE

1				
ROC AUC: 0.80	502112274346	02		
Brier Score:				
Accuracy Score				
Classification				
	precision		f1-score	support
i	precipion	recuir	11 00010	suppor c
0	0.98	0.78	0.86	20950
1	0.25	0.80	0.38	1979
	0.25	0.00	0.50	1979
1				
accuracy			0.78	22929
macro avg	0.61	0.79	0.62	22929
weighted avg	0.91	0.78	0.82	22929
· · ·				

TRADE OFF BETWEEN PRECISION - RECALL; HIGHER BRIER SCORE WHILE USING SMOTE

ASSUMPTION & SOLUTION

ASSUMPTIONS

- Apache score is specialized to the US's patients; therefore, it might not be appropriate measurements for patient from outside of the US.
- Keep minimum features without losing accuracy

BUSINESS RELATED

- Try 2 different approaches:
 - keep provided apache score for modeling , and compare against
 - models that remove almost apache score having similar feature measurements to labs and vitals.

- Any features that makes the model biased and less generalizable should be dropped
- Our model only considers patient's health, severity instead of hospital or ICU quality, level of care, etc.
- SMOTE is not applicable for this data
- Adjust probability instead of trying to balance the data
- Patients with high missing features has lower survival rate overall
- Assuming missing measurement as people who falls into normal range of the test results.

MISSING

VALUES

MODEL BIAS

- Drop features:
 - hospital_id, icu_id,
 - apache_4a_hospital_death_ prob
 - apache_4a_icu_death_prob
 - gender, ethnicity

BALANCED

- Adjust prediction probability to classify target variable based on quantile probability - 90% quantile
- Using other metrics to evaluate the model instead of accuracy, i.e.: AUC, precision-recall, Brier score,

- Bin it into 5 categories based on quantile
- Treat missing value as another category (normal range)
- Impute missing value using apache3j bodysystem
 - Features that has more than 50% missing values, fillna by 99

. . .

MODELING

- Assessment Criteria
- Models
 - Logistic Regression
 - Random Forest
 - Light Gradient Boosting
 - CatBoost
 - Neural Network
- Model Selection

MODEL ASSESSMENT CRITERIA

MODELING: USING STRATIFY SAMPLING ON 'HOSPITAL'_DEATH' TO HAVE SAME PROPORTION OF BOTH TRAIN AND TEST

LOGISTIC REGRESSION (1) - BINNING

1.0

0.8

True Positive Rate

0.2

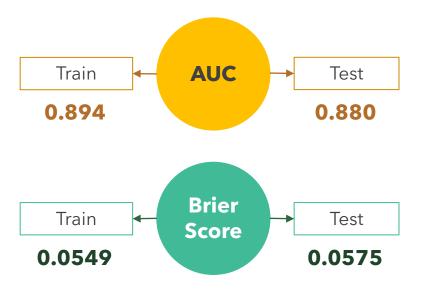
0.0 0.0

0.2

0.4

recall f1-score

False Positive Rate


0.6

0.95

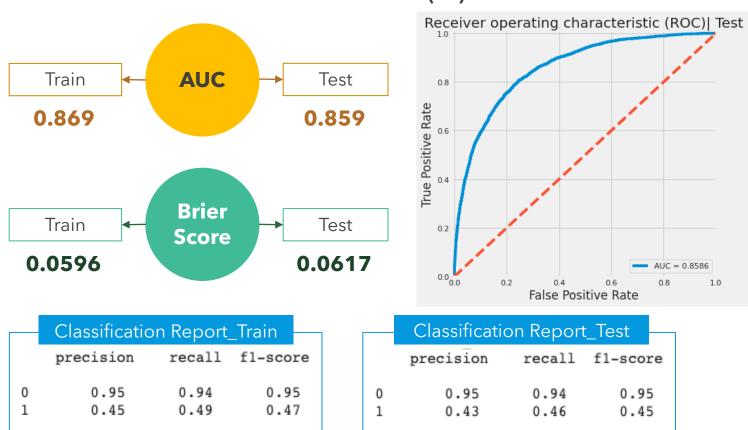
0.50

0.8

1.0

٢	(Classificatic	n Repor	t_Train -	,	Classificatio	on Repor	t_Test
		precision	recall	f1-score		precision	recall	f1-sc
	0 1	0.96 0.49	0.94 0.56	0.95 0.52	0	0.96 0.46	0.94 0.54	0. 0.

Complexity


- Total number of features using: **463 features**
- Time running models: **13.4s** (Colab)

Number of models tried: 10

Receiver Operating Characteristic - Logistic regression

Feature Importance	Coefficient	Importance
apache_3j_bodysystem_Metabolic	1.0	1.5
bin_d1_lactate_min_100_percentile	1.0	1.5
elective_surgery_0	0.7	1.0
bin_d1_heartrate_max_100_percentile	0.7	1.0
bin_d1_creatinine_max_100_percentil	e 0.6	0.9
gcs_motor_apache_2.0	0.6	0.8
bin_d1_inr_max_100_percentile	0.5	0.8
age	0.5	0.8
bin_d1_temp_max_60_percentile	0.5	0.8
apache_3j_bodysystem_Neurological	0.5	0.8
bin_d1_hemaglobin_max_80_percenti	e 0.5	0.7
bin_d1_temp_max_100_percentile	0.5	0.7
gcs_motor_apache_6.0	0.5	0.7
bin_d1_wbc_min_100_percentile	0.5	0.7
solid_tumor_with_metastasis_0.0	0.5	0.7
bin_d1_temp_max_80_percentile	0.5	0.7
bin_d1_pao2fio2ratio_max_80_percent	le 0.5	0.7
bin_urineoutput_apache_80_percentil	e 0.5	0.7
solid_tumor_with_metastasis_1.0	0.4	0.7
bin_d1_h1_min_hco3_(0.0, 32.0]	0.4	0.7

COMMENTS: No signs of overfitting

Complexity

- Total number of features using: **177 features**
- Time running models: **9.85s** (Colab)

Number of models tried: 2

AUC = 0.8586

1.0

0.8

0.6

0.95

0.45

Feature Importance	Coefficient	Importance
apache_3j_bodysystem_Metabolic	1.3	4.6
apache_3j_bodysystem_Hematological	0.7	2.6
diff_max_platelets_24hr_1hr	0.7	2.5
elective_surgery_1	0.6	2.2
apache_3j_bodysystem_Genitourinary	0.6	2.2
icu_admit_source_Operating Room / Recovery	0.6	2.2
diff_min_platelets_24hr_1hr	0.6	2.2
gcs_motor_apache_6.0	0.6	2.1
ventilated_apache_0.0	0.6	2.0
age	0.5	1.9
gcs_motor_apache_2.0	0.5	1.7
solid_tumor_with_metastasis_0.0	0.5	1.7
gcs_motor_apache_5.0	0.4	1.6
diabetes_mellitus_1.0	0.4	1.5
hospital_admit_source_Step-Down Unit (SDU)	0.4	1.5
hospital_admit_source_Operating Room	0.4	1.5
gcs_motor_apache_1.0	0.4	1.5
icu_type_CSICU	0.4	1.4
apache_3j_bodysystem_Gynecological	0.4	1.3
apache_3j_bodysystem_Musculoskeletal/Skin	0.3	1.2

LOGISTIC REGRESSION (2) - IMPUTING

COMMENTS: No signs of overfitting

LC	LOGISTIC REGRESSION (3) – PCA									
						Receiver operating characteristic	(ROC) Test			
Tr	ain 🕂	AUC		Test		0.8				
0.8	91		0.	.880		and a second sec				
	ain 559	Brier Score		Test 0579	9	et al a construction of the second se	C = 0.8801 8 1.0			
	Classificatio	n Report_	Train	I		Classification Report_Test				
F	precision	recall	fl-score			precision recall f1-score				
0 1	0.96 0.48	0.94 0.55	0.95 0.51		0 1	0.96 0.94 0.95 0.47 0.54 0.51				

.

10

Complexity

- Total number of features using: **712 features**
- Time running models: **22.6s** (Colab)

Number of models tried: 2

cumulative explained variance

COMMENTS: No signs of overfitting, most of the top feature importance are binary data

Feature Imp	ortance			
		•	Coefficient	Importance
	apache_3j_diagno	sis_1207.01	2.2	2.0
	apache_3j_diagno	osis_703.03	1.6	1.5
	apache_3j_diagno	osis_702.01	1.6	1.4
	apache_3j_diagno	sis_1502.02	1.3	1.2
	apache_3j_diagno	sis_1501.01	1.3	1.1
	apache_3j_diagno	sis_1206.03	1.2	1.1
	apache_3j_diagno	osis_202.01	1.1	1.0
	apache_3j_diagno	osis_306.01	1.0	0.9
apache_3j_diagnosis_401.01			0.9	0.8
	apache_3j_diagnosis_601.01			0.8
	apache_3j_diagno	0.9	0.8	
	apache_3j_diagno	0.9	0.8	
	apache_3j_diagno	osis_402.01	0.8	0.8
	missing_featu	res_104	0.8	0.7
	apache_3j_diagno	osis_403.01	0.8	0.7
	apache_3j_diagno	osis_201.01	0.7	0.7
	anacha 2i diagna	sis_301.01	0.7	0.6
		es_105	0.7	0.6
		sis_409.02	0.7	0.6
		sis_209.01	0.6	0.6
		sis_211.1	0.6	0.6
		es_102	0.6	0.6
20 40 60	80 100 120 140		ing 70 out	
number of c	omponents	prin	ciple com	ponents

ure	Importance	Importance
	gcs_eyes_apache_1.0	0.26
	gcs_motor_apache_6.0	0.24
	bin_d1_spo2_min_(-1.0, 89.0]	0.13
	ventilated_apache_0.0	0.08
	icu_admit_source_Operating Room / R	ecovery 0.05
	elective_surgery_0	0.03
	bin_d1_lactate_max_100_percent	tile 0.03
	bin_d1_creatinine_max_Norma	I 0.03
	bin_d1_max_min_spo2_(10.0, 100	0.03
	bin_d1_creatinine_min_Normal	0.02
	gcs_motor_apache_1.0	0.02
	ventilated_apache_1.0	0.01
	bin_d1_lactate_max_80_percent	ile 0.01
	bin_d1_creatinine_max_100_perce	ntile 0.01
	apache_3j_bodysystem_Cardiovas	cular 0.01
	bin_fio2_apache_(0.8, 1.0]	0.01
	bin_d1_arterial_po2_max_Norm	al 0.01
	bin_d1_hematocrit_max_Norma	al 0.00
	bin_d1_arterial_pco2_max_Norm	al 0.00
	pulse_pressure_min	0.00
	bin_d1_max_min_pco2_Norma	I 0.00
	bin_d1_sodium_min_Normal	0.00
	bin_d1_hematocrit_min_Norma	I 0.00
	bin_d1_arterial_pco2_min_Norm	al 0.00
	apache_3j_bodysystem_Metabol	ic 0.00
	age	0.00
	bin_d1_wbc_max_Normal	0.00
	bin_d1_lactate_min_100_percent	ile 0.00
	missing_count	0.00

Feat

RANDOM FOREST – BINNING

Classificatio	on Repor	t_Train		Classification
precision	recall	f1-score		precision
0.94	0.97	0.95	e	0.94
0.49	0.35	0.41	1	0.49

Complexity

0

1

- Total number of features using: **34 features**
- Time running models: **8.48s** (Colab)

Number of models tried: 2

0.97

0.35

^{0.4} False Positive Rate

Report_Test

recall f1-score

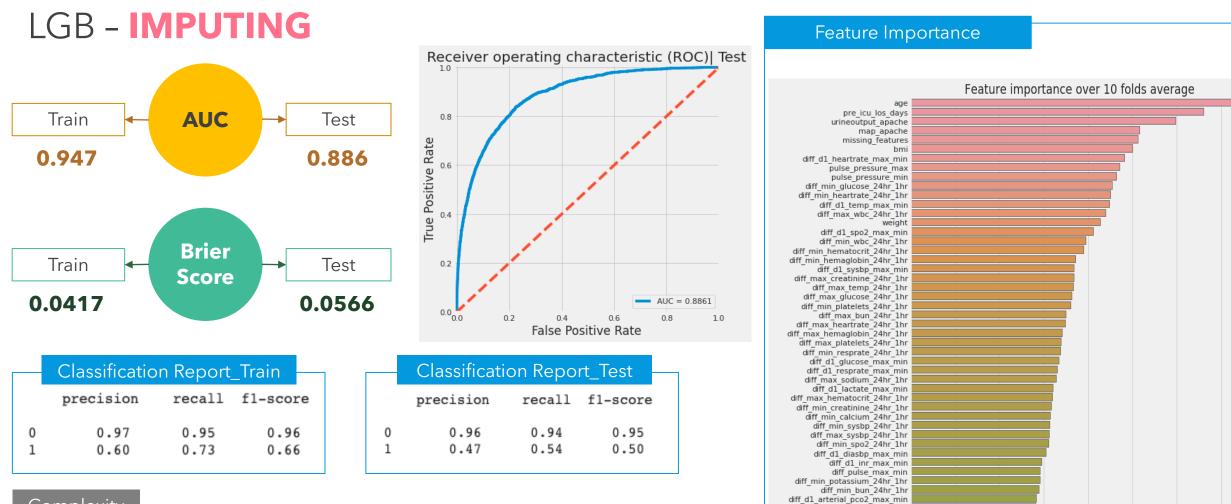
0.95

0.41

1.0

0.8

0.2


COMMENTS: No signs of overfitting, but poor performance on recall

WHY WE USE LGB AND CATBOOST OVER XBG?

Function	XGB	CATBOOST	LGB	
Categorical variable	 Can not handle categorical variable; only accept numerical variables 	 Can handle categorical variable automatically (one-hot max size encode) 	 Can handle categorical variable: binning continuous variable to discrete variable based on histogram 	
	Level-wise	e tree growth	Leaf-wise tree growth	
Tree growth	 uses pre-sorted algorithm & Histogram- 	based algorithm for computing the best split	 filter out the data instances for finding a split value; can reduce more loss than the levelwise algorithm, resulting in much better accuracy which can rarely be achieved by any of the existing boosting algorithms 	
Time complexity	 Take more time to run model, especially on high dimensional data 	 The algorithm reduce time for hyper- parameter tuning and and lower the chances of overfitting also which leads to more generalized models 	 Compatibility with large data set: Reduce significant training time as compared to XGBOOST 	

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

21

Complexity

Total number of features using: 177 features

Number of models tried: 4

diff max calcium 24hr 1hr

50

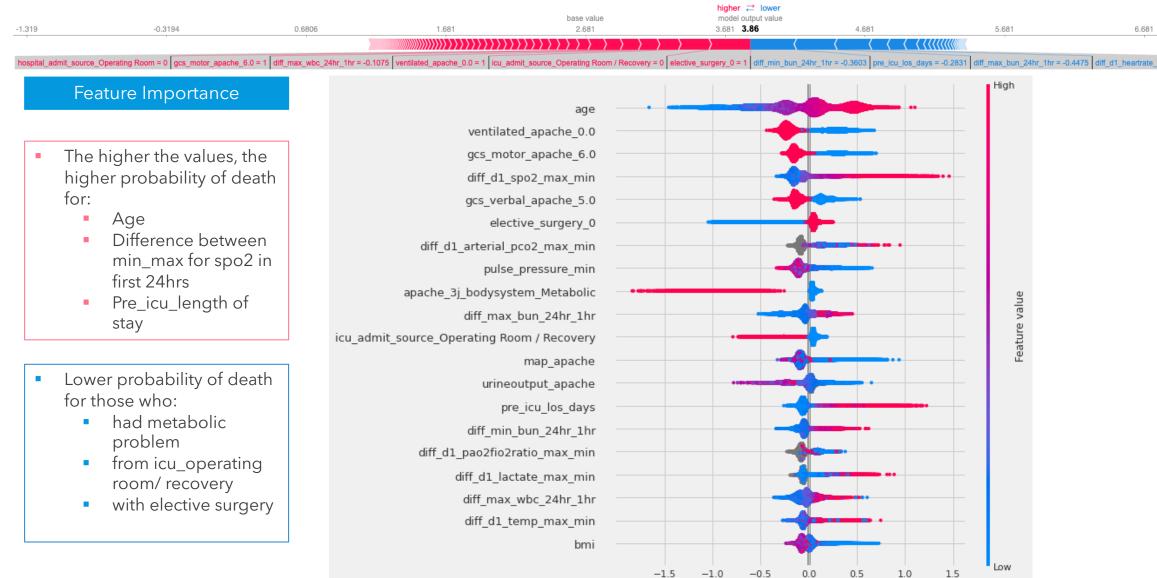
75

100

average feature imp

125

150


25

• Time running models: **8.15 mins** (Colab) With StratifiedKFold: 10 folds

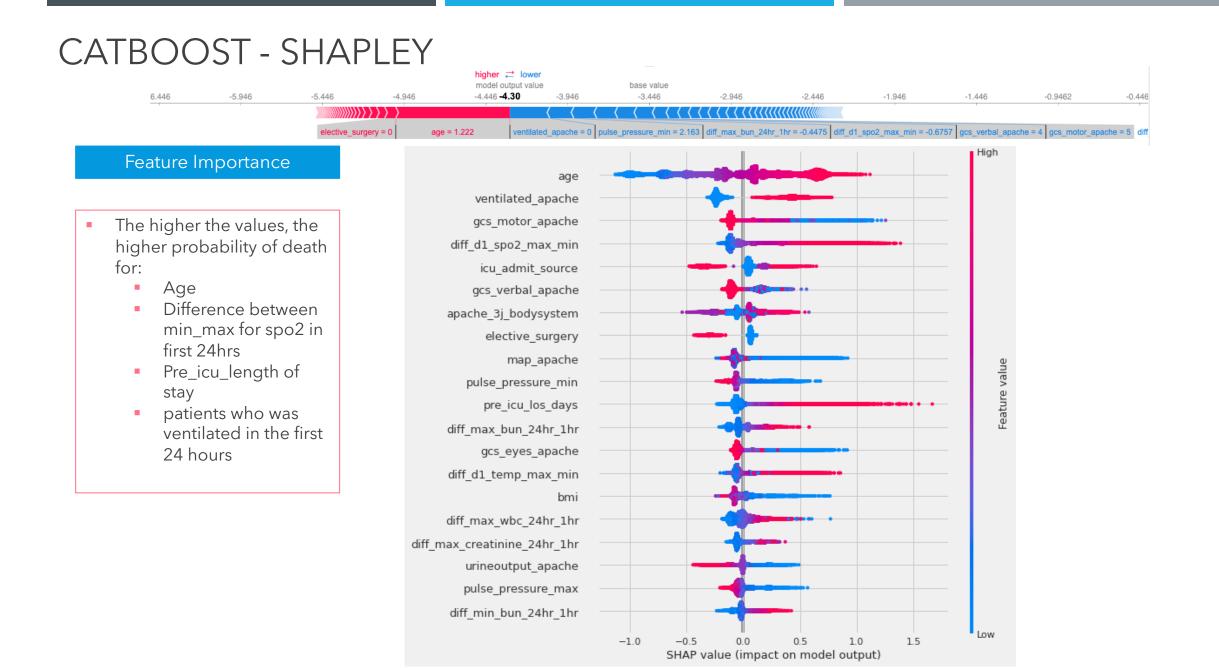
COMMENTS: Signs of overfitting! Big gap between train and test on AUC score

175

LGB – SHAPLEY

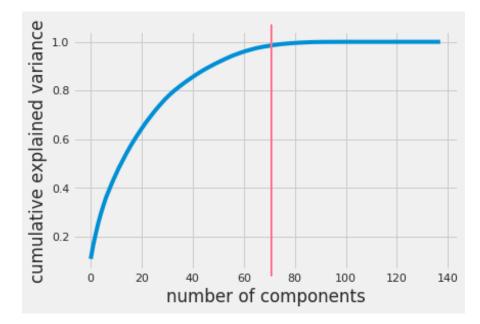
SHAP value (impact on model output)

CATBOOST – IMPUTING									
Train • A 0.834	UC Test 0.884	Receiver operating characteristic (ROC) Test							
Irain 🗲	rier core Test 0.0567	eritice Rate							
Classification Re	port_Train	Classification Report_Test							
precision rec	call f1-score	precision recall f1-score							
		0 0.96 0.94 0.95 1 0.47 0.54 0.50							


Complexity

- Total number of features using: 107 features
- Time running models: 8 mins (Colab) + 1hr GridSearch
- Grid Search Parameters:
- Learning rate: 0.04
- Depth: 7

Featu	ure Importance	
	feature_names	feature_importances
	age	7.4
	ventilated_apache	4.6
	gcs_motor_apache	3.7
	diff_d1_spo2_max_min	3.2
	apache_3j_bodysystem	3.2
	gcs_verbal_apache	3.0
	icu_admit_source	2.8
	map_apache	2.4
	elective_surgery	2.4
	pre_icu_los_days	2.2
	gcs_eyes_apache	2.0
	diff_d1_temp_max_min	2.0
	diff_max_wbc_24hr_1hr	1.9
	missing_features	1.8
	pulse_pressure_min	1.8
	diff_max_bun_24hr_1hr	1.7
	diff_min_bun_24hr_1hr	1.5
	urineoutput_apache	1.5
	diff_max_sodium_24hr_1hr	1.4


pulse_pressure_max

1.4

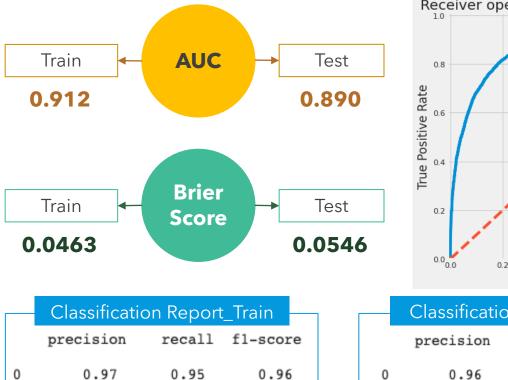
PCA + NEURAL NETWORK (1)

Using 70 out of 138 principle components

Why using PCA for Neural Network?

- Reduces computation complexity by reducing the size of the network, amount of data needed to train
- Reduce overfitting
- However, discriminative information that distinguishes the class might be in low variance components.

Neural Network Model


```
def create_model(input_dim):
    input_layer = Input(shape=(input_dim, ))
    classifier = Dense(256, activation='relu')(input_layer)
    classifier = Dense(128, activation='relu')(input_layer)
    classifier = Dropout(0.5)(classifier)
    classifier = Dense(1, activation='sigmoid')(classifier)
    classModel = Model(inputs=input_layer, outputs=classifier)
    classModel.compile(optimizer='adam', loss='mean_squared_error')
    return classModel
```

Layer (type)	Output	Shape	Param #
input_5 (InputLayer)	(None,	712)	0
dense_10 (Dense)	(None,	128)	91264
dropout_3 (Dropout)	(None,	128)	0
dense_11 (Dense)	(None,	1)	129
 Total params: 91,393			

Trainable params: 91,393 Non-trainable params: 0

nb_epoch = 50
batch_size = 128
adam = Adam(lr=0.0005)

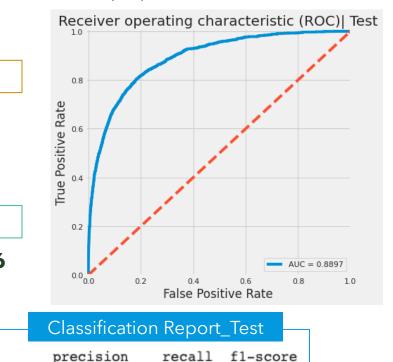
PCA + NEURAL NETWORK (2)

Complexity

0.56

Total number of features using: 91,393 features

0.60

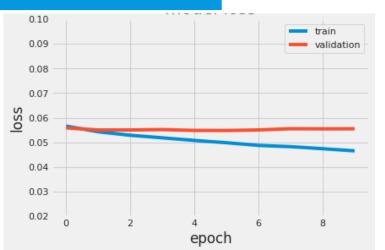

1

0.48

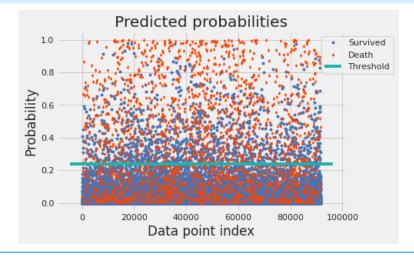
Time running models: **38.5s** (Colab)

0.64

COMMENTS: No signs of overfitting


0.94

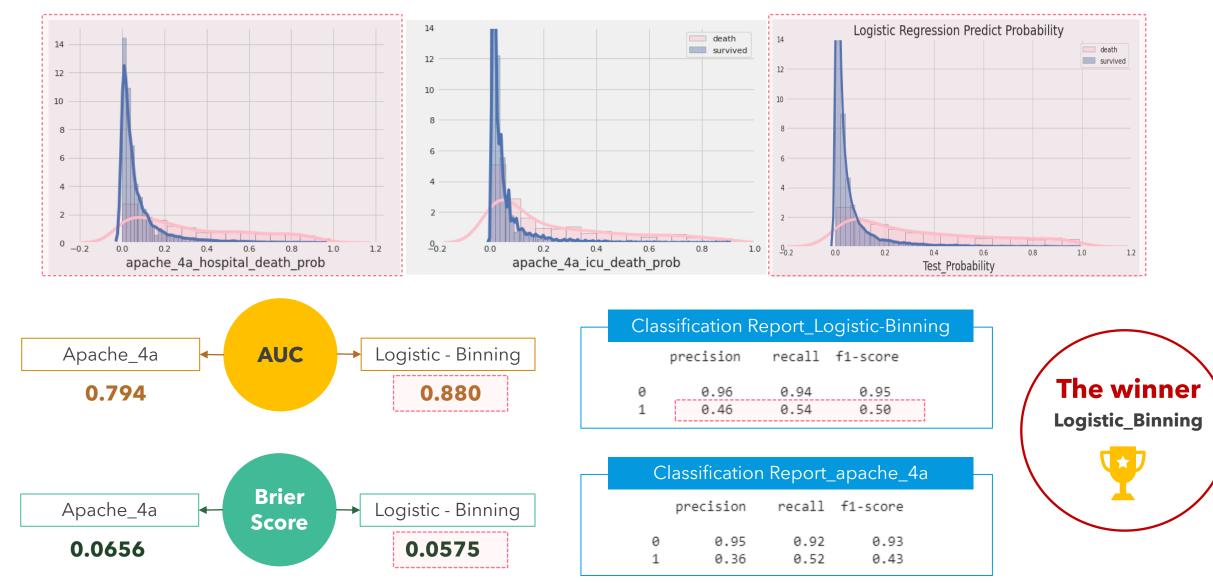
0.56


0.95

0.52

Train vs. Validation loss

Sparse - probability for both death and survived


MODEL COMPARISION & SELECTION

Νο	Model	AUC	Brier Score	Precision	Recall	Run Time	No. features	Overfitting
公	Logistic Reg - Binning	0.880	0.0575	0.46	0.54	13.4s	463	No
2	Logistic Reg - Imputing	0.859	0.0617	0.43	0.46	9.85s	177	No
3	Logistic Reg - PCA	0.880	0.0579	0.47	0.54	22.6s	712	No
4	Random Forest - Binning	0.820	0.0644	0.49	0.35	8.48s	34	No
5	LGB - Imputing	0.886	0.0566	0.47	0.54	8.15 mins	177	Yes
6	CatBoost	0.884	0.0567	0.47	0.54	8 mins	107	No
	Neural Network - PCA	0.890	0.0546	0.48	0.56	38.5s	91,939	No

Best performance in terms of AUC, Brier Score, Precision, Recall

Business applicable (less complexity + generalizable)

COMPARE THE WINNING MODEL WITH ACTUAL APACHE_4A_PROBABILITY

SUMMARY

- Conclusion
- Lesson Learned
- Future Work

CONCLUSION

- Logistic regression is a good model for this type of dataset
- SMOTE does not help in this case since:
 - it does not take into account neighboring examples can be from other classes, introducing additional noise
 - is not very practical for high dimensional data
- Binning: works well for extreme values, that shows importance in the model

LESSON LEARNT

- Should not drop features or observations with high percentage of missing values without having a basic domain knowledge
- Trade-off between explainability and interpretability. The best performance model does not have to be the one that being used in practical
- Be creative! Our call to adjust the threshold instead of using the original probability threshold: 0.5 for imbalanced data
- Write functions to impute data and run model (time efficiency)

FUTURE WORK

- Have a better understanding about the features (domain knowledge)
- Collect more data: Using GAN to generate more data instead of using SMOTE
- Improve model prediction ability by:
 - Learning the key features importance of each model and try to combine such features
 - Applying Autoencoder to get a higher level of understanding the characteristics of patients who were misclassified with 'death' or 'survived'

THANK YOU!

APPENDIX

DICTIONARY

Features	Definition
ventilated_apache	Whether the patient was invasively ventilated at the time of the highest scoring arterial blood gas using the oxygenation scoring algorithm, including any mode of positive pressure ventilation delivered through a circuit attached to an endo-tracheal tube or tracheostomy
urineoutput_apache	The total urine output for the first 24 hours
map_apache	The mean arterial pressure measured during the first 24 hours which results in the highest APACHE III score
intubated_apache	Whether the patient was intubated at the time of the highest scoring arterial blood gas used in the oxygenation score
apache_post_operative	The APACHE operative status; 1 for post-operative, 0 for non-operative
arf_apache	Whether the patient had acute renal failure during the first 24 hours of their unit stay, defined as a 24 hours urine output <410ml, creatinine >=133 micromol/L and no chronic dialysis
gcs_unable_apache	Whether the Glasgow Coma Scale was unable to be assessed due to patient sedation
apache_3j_diagnosis	The APACHE III-J sub-diagnosis code which best describes the reason for the ICU admission