NIVEAU §
’ /400 &5
NI.10 10

Big Data Solution for
Gaming eCommerce
Platform

Team 3:
Han Jeon, Jim Fang,

Tam Nguyen,WooJong Choi

Content

Background & Business Use Case
Data Pipeline

Interesting Findings

EDA & Feature Engineering

Modeling: Regression &
Classification

Clustering, Recommendation &
Graph Analysis

Conclusion

Background & Objectives

A Steam Background

Video game digital distribution service by Valve
* Valve: Steam parent company

* Valve has enjoyed enormous success
as a game developer - Half-
Life, Counter-Strike: Global
Offensive, and Dota 2.

Growth

2003 2017 2019
|

a0

First Largest digital distribution platform for PC gaming:
launched ~75% of the market space (digital sales)
Sep 2003

Users purchasing games through ~ Over 34,000 games,
Steam totaled ~ US$4.3 billion over 95 million

(~ 18% of global PC game sales) monthly active users

@ Project Obijectives

Understand gamer behavior and habits

* Play time, money spent on games
* Game genres, friends & groups

¢ and more.

Predict user playtime / build recommender using tree
based regressors/classifiers

Group players with similar attributes, and make
recommendations using ALS/Graph Algorithms

Data Pipeline

Resources

@

Compute Engine
1 instance

&

»

Cloudera

o 2

THE UNIVERSITY OF CHICAGO

_ RESEARCH
Google Cloud Platform Local Machine COMPUTING
Internet CENTER

Research Lab

Storage
2 buckets

saL
1instance

«©

S}
o

»
»

v

v
4

Py.S>’pc1r‘I,<\Z

Cloud SQL FileZilla
B Configuration SpOFKAZ ﬁ

ML

VCPUs Memory SSD storage
32 120 GB 525GB

Boot disk

Name Image Size (GB) Device name Type Encryption

steam-data debian-10-buster-v20200413 600 steam-data Standard persistent disk Google managed

Dataset & Schema

Cover 10 years periods:
2003 - 2013

.sql format | Size: | 60Gb

Total tables: 10

i S &

Subset

Total : 24 GB

HOW DID WE SUBSET?

Except for games2_df and
player_summary, the rest of
data: fully downloaded

Games2_df: subset |00M
observations

Player_summary: 10M unique
users

Games2_df: 5GB

Player_summary: 5.5 GB

App_id_info: 1.4 MB

Ifl_E_lfl Data Schema

Games Developers

App id Info

1 appid
Developer

Games Genres

Groups : 3.8 GB

Friends : 9.2 GB

Game developer : 0.4 MB

Game genre : 0.6 MB

Game publisher : 0.4MB

Achievement: 5.3MB

A

Steam Web Scraping: 20.6MB

appid
Genre

Games_Publishers

appid
Publisher

Achievement

appid
Title
Type
Price
Release Date
Rating
Required Age

Is_Multiplayer

Player Summa

[

Games2 df

B steamid
appid
playtime_2weeks
playtime_forever

dateretrieved

Groups

steamid
groupid

dateretrieved

= mi
Percentages steamid
. lastlogoff
appid : :
Name primaryclanid
timecreated
Percentage .
gameid
gameserverip
loccountrycode
appid locstatecode
title loccityid
postiveRating dateretrieved
platform

steamid_a
steamid_b
relationship
friend since

dateretrieved

The schema does not represent cardinality

EDA & Feature Engineering & Challenges

Join tables Split columns Other feature engineering
Ao id o Games2 Garmes Publishers
appid steamid appid steamid appid appid appid
Title appid Genre lastlogoff Developer Publisher Genre
Type playtime 2weeks i lanid
Price playtime_forever timecreated o . Fr|ens
Release_Date dateretrieved gameid stean‘vd steam!d_a
Rating gameserverip groupid stea'm Id_.b
Required_Age loccountrycode deteretrieved relationship
. friend_since
Is_Multiplayer locstatecode
loccityid dateretrieved
dateretrieved

CHALLENGE: CHALLENGE: * Join tables
* Data explodes to 7.6 B rows if using normal join * Columns are not parsed correctly when ’ f\e?ga;\gv;l/e?ftures, e. years of friendship, game
export from Cloud SQL to CSV
. Aﬁ%regation: total # groups, total # friends, count
SOLUTION: SOLUTION: of hours played, count of games by genre, etc.
+ Column wise approach: make sure the # rows is the same * Based on the distribution of number of * Remove or impute missing values
(aggregate, one hot encoding) commas within each column, identify

columns to split dataset into subsets
with similar patterns

* Define logic based on the split dataset

e
Total features: 39

Interesting Findings (1/2)

Top 20 games

14,000
12,000
Q
CenriarSale, Half-Life 2: Deathmatch, |Half-Life: Opposing [Half-Life: Blue Shift, Team Fortress £10,000
2,230,515 2,017,158 Force, 1,897,439 1,897,297 Classic, 1,896,583 §~
8- 8,000
Counter- g’o
Strike: e
Condition 2 6,000
Deathmatch Classic, Zero, <

1,887,741 755,205

4,000

Day of Defeat,
1,893,058

Counter-Strike: Source,

2,056,456 Half-Life 2, 1,952,951

Counter-
Strike:
Condition | Portal,
Zero, 755,205|703,775 0

Left 4 Dead 2,
565,050

2,000

Half-Life 2: Team
Episode One, |Fortress 2,
707,449 655,267

Half-Life 2: Lost Coast,

2,046,927 HalREife B2 7038 Ricochet, 1,887,840

Revenue by game (x10 mil)

Counter-Strike: Source
Counter-Strike
Half-Life 2
Half-Life
Left 4 Dead 2

Serious Sam 3: BFE
Half-Life 2: Deathmatch
Half-Life 2: Opposing Force
Half-Life: Blue Shift

Team Fortress Classic

0 0.5 | 1.5 20 25 3.0 35 40

(Revenue: x 10 million)
Over 10 years period: 2003 -2013

AVG # friends/ player

Most addicted game (play time)

~ v v 0 o ~ N o 0 9 N N
s S EEEEESEGETEZEESO
DB R EEEEEEE
o 9 ® O O & <€ S22 5 93¢ g & &
> £ = 8 £ 3 8§ © s £ £ %
Qo'-”f,>; o =n¢C;Oo:
c > @0 L E = 9] et S
c W [%} = 2 M X NU_
=2 F = c e §a g S8 o
o - [] < 2 0 9
3 53°% 5w U
0 S »n o [I w o
o X v 5 2 . O
F= (o] U =
5 3 = > X Q9
@ 8 E§ b=l 5 B
o A & @2 B
< L~ «©
= % g o
= 5
S o
O

Base (N = ~3.2 million users)

Dragon Age: Origins

Total war: ROME Il — Emperor

Edition

AVG # groups/ player

1.6 &)

games by Developer & Publisher

gamesDeveloper count

gamesPublisher count

Ubisoft - San Francisco 850

Dovetail Games 233

Feral Interactive (Mac) 227
SmiteWorks USA, LLC 185
Avalanche 158

Feral Interactive (Linux) 148

Relic Entertainment 130

KOEI TECMO GAMES CO., LTD. 120
Paradox Development Studio 112
Stainless Games 1M

Game types

m SinglePlayer

= MultiPlayer

Ubisoft 376

SEGA 339

Dovetail Games - Trains 279
Paradox Interactive 247
Disney Interactive 227

Feral Interactive (Mac) 221
Activision 218

Degica 190

Nordic Games 164

Square Enix 148

Top genres

total

Action 1537.0
Indie 1523.0
Adventure 958.0
Strategy 834.0
Casual 737.0
RPG 5820
Simulation 477.0
Racing 1520
Free toPlay 146.0
Sports 102.0

Early Access 93.0

Interesting Findings (2/2)

0.90
number_friends
number_groups -
-0.75
total_money_spend * Surprisingly, number of friends is not highly
correlated with number of groups
- 060 3
* High number of games a player has does not
total_games_owned . .
necessarily translate to more playtime
total_games_played 045

total_games_not_played

=]
~
(=}
o
wn
~

total_playtime_forever -

' ' | '
v v b=l © ° ;-] 5
° a c @ o [L
c 3] c > > H
& g & = o) =
=] ! © 2 % &
. . > 0 " a |
o @ Vv V U o o
a -} 5 £ £ < £
\ £
E E £ =4 o 9 =3
2 2 =] = £)
B gt B - _
8 8 !]
= 32
2 8

8

Run on a subset data of 600k observations — keep distribution the same as original |00M observations

Regression &
Classification

Regression | Playtime_forever

Linear Regression Decision tree

Gradient Boosting

paramGrid = (ParamGridBuilder ()
.addGrid (gbt .maxDepth,
.addGrid (gbt.maxBins,
.addGrid (gbt.maxIter,
.build())

(4,5,61)
[250,500])
[10,20])

Important Variables (Gini)

total_games_owned 0.25
total_playtime_forever NSV
app_id 1

achivements_cnt 0.08

pct_games_played 0.07

Difficulty in finding a relationship between the
feature engineered variables and the overall

playtime forever

grid = (ParamGridBuilder () paramgrid = (ParamGridBuilder ()
.addGrid(lr.maxIter, [5, 10]) \ -addGrid(dt.maxDepth, [4,6,8,12])

. .addGrid(dt.maxBins, [250,500])
.addGrJ..d(lr.regPaz.':am, [0.01, 0.1]) \ adderid (dt.maxIter. [10])
.addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0]) o e e et s e | el . o)
.build()) .build())

Important Variables (Relative Importance - Gini)
isMultiplayer 0.31
R —
achievements_count
requiredAge . 0.01
Model Train RMSE Test RMSE Test RA2 (%)
Linear Regression 6221.4 6209. 1 .
Decision Trees 5980.7 6035.2 12.33
Gradient Boosting 5689.3 57624 20.8

Classification | Game Played or Not

Important Variables

paramGrid = ParamGridBuilder ()\ paramGrid = {"max depth": [3, None],

B el e e "max_features": [10,20], pct.games_piayed [EEH—
.addGrid (lr.elasticNetParam, [0.0, 0.5, 1.0]) "min_samples_split": [1,10], app_id f0s |
.addGrid(lr.maxItexr, [10])\ "min_samples_leaf": [1,10], achivements_count
.addGrid (lr.regParam, [0.01, 2.0]) \ "bootstrap": [True,False],)
-build() "criterion": ["gini"], price m
"n estimators": [10,20,301} positiveReviewCount I0.01
- isMultiplayer |o
Test Conf Matrix | Actual Yes m Test Conf Matrix | ActualYes | Actual No
Predicted Yes 6,434,587 1,909,805 PredictedYes 7,588,084 2,693,208
Predicted No 1,904,835 3,316,757 Predicted No 745,087 2,533,714
Model Train Test Train FI Test FI

Recall / Precision Recall / Precision
Logistic Regression 79% | 76% 77% | 77% 0.775 0.771

Random Forest 91% [74% 1% [74% 0819 0.815

Classification | Recommendation Workflow

T
“\ Q@
DESTINY Y2 ‘-.'ﬁs

&w gRand

(" EFL:
Steam_ID: : ‘\/ag
224435345636 : a ?‘ ~
Predicted Probability: 0.97 0.91 0.87 0.85
Start with a Score using ML pipeline on Generate Top 5 Steam Games
User ID games not seen, based on Recommendation on Landing Page,
customer play history and sorted on predicted probability

preferences

\

- »
ENDLESS | SPACE
s

-
A

0.84

12

count

Clustering }A{

Base (N = ~3.2 million users)

K — Means Clustering

le7

40

Optimal k values: 6

1400000 -

1200000 -

1000000 -

800000 A

600000

400000

200000 -

0-

duster

In [13]:

In [14]:

In [15]:

In [16]:

In [18]:

In [19]:

2. Convert datetype to float (KMeans - Readable format)

1 for col in dfl.columns:
: if col in feature_col:
3 dfl = dfl.withColumn(col,dfl[col].cast('float'))
3. Vector Assemble
1 vecAssembler = VectorAssembler(inputCols=feature_col, outputCol="features", handleInvalid="keep")

2

df_kmeans = vecAssembler.transform(dfl).select("steam id", "features")

4. Scale data 1|

1

wN e

(S

scaler = standardScaler(inputCol="features", outputCol="scaled features", withStd=True, withMean=False)

Compute summary statistics by fitting the StandardScaler
scalerModel = scaler.fit(df_kmeans)

Normalize each feature to have unit standard deviation.
df kmeans = scalerModel.transform(df_ kmeans)

5. K.Means - select optimal k value

wN e

o U

Based on the graph, 6 should be the optimal number of clusters

tttime

cost = np.zeros(10)

for k in range(2,10):
kmeans = KMeans().setK(k).setSeed(l).setFeaturesCol("scaled features").setPredictionCol("cluster”)
model = kmeans.fit(df_kmeans.sample(False,0.l, seed=911))
cost[k] = model.computeCost(df_kmeans)

CPU times: user 118 ms, sys: 42.1 ms, total: 160 ms
Wwall time: 1min 1ls

fig, ax = plt.subplots(l,1, figsize =(12,8))
ax.plot(range(2,10),cost[2:15])
ax.set_xlabel('k")

ax.set_ylabel('cost')

14

Cluster profile ;&.‘

Base (N = ~3.2 million users)

The Ordinary (~ 48%)

Makes up half the total population and are regular,
normal, Average Joe type of gamers

Money: ~ $ 200

Game owned: ~ 20 (does not play 50%)
Total Playtime: ~ 350 hrs

Game type preference: Multiplayer

Friends: 8
Group: 1.3
active

The Bandwagoner (~ 41%)

More likely to only play games that are popular, plays
for a while and leaves Steam. Need based customers
who are not hardcore gamers

Money: ~ $ 60

Game owned: ~ 8 (does not play 87%)
Total Playtime: ~ 13 hrs

Game type preference: Multi player

Friends: ~2

Group: ~0

in-active

The Old-Fashioned (~ 6.5%)

More likely to be older gamers who prefer older
games

Money: ~ $ 1800

Game owned: ~ 130 (does not play 40%)
Total Playtime: ~ 1,600 hrs

Game type preference: Single Player

Friends: 20

Group: 4

active

The Savvy (~3%)

a.k.a smart shoppers.Takes full advantage of what’s
available on Steam. Doesn't own many games but
plays a lot and is the most well connected

Money: ~ $ 500

Game owned: ~ 35 (does not play 40%)
Total Playtime: ~ 2,300 hrs

Game type preference: Multiplayer

Friends: 92
Group: 20
active

Loyal, second most hardcore and may be relatively
younger gamers compared to The Old-fashioned
gamers, also more likely to play newer games

Money: ~ $ 5,000

Game owned: ~ 350 (does not play 50%)
Total Playtime: ~ 2,000 hrs

Game type preference: Single player

Friends: ~37

Group: ~8

active

The VVIP (0.05%)

The most loyal, the most hardcore gamers, a.k.a the
collectors. Games are a big part of their lives. Every
game platform provider's dream.

Money: ~ $ 15,000
Game owned: ~ 1,300 (does not play 73%)
Total Playtime: ~ 2,600 hrs
Game type preference: Single player
Friends: ~50
Group: ~17
active
15

-
1600000 s00000
-
]] H
| — § om0 ge
£ aowo H B
§ . § 00000 gmmm
e
- -
-
¢ O ww e a0 ;o 20 205 206 mor 08 w0 mu m mn me @ @ T T T TR T
""""""""""""""""" year
o I O/
Ihe Savvy (~3%) Ihe Early Adopters (~1%
-
-
.
-
200000
5 5 5 60000
£ £ £
H § oo H
% 150000 g)
En Ew Ew
H 5 5
g g g/ s0000
Emmn g 400000 H
.
e -

Cluster — Released year game played

The Ordinary (~ 48%)

The Bandwagoner (~ 41%)

The Old-Fashioned (~ 6.5%)

1970

1997

1970 1997 1998 1999 2000

16

Top games by clusters

S - _

Valve

cluster

The Ordinary

The Bandwagoner
The Old-Fashioned
The Savvy

The Early-Adopter

The VVIP

Different games

m

Sid Meier's Civilization V
FTL: Faster Than Light
Terraria

Just Cause 2

Day of Defeat: Source

Dota 2

Left 4 Dead
Trine 2: Complete Story
Trine Enchanted Edition
The Binding of Isaac
Mark of the Ninja

Batman: Arkham Asylum Game of the
Year Edition

Serious Sam 3: BFE

Batman: Arkham City - Game of the
Year Edition

Space Pirates and Zombies

2010
2012
201 |
2010

2010

2013

2008

2013
2009
201 |
2012

2010
201 |
2012
201 |

Strategy
Strategy
Action
Action

Action

Action

Action

Action
Action
Action
Action

Action
Action
Action

Action

29.99
9.99
9.99
14.99

9.99

19.99

19.99
14.99
4.99
14.99

19.99
99.99
19.99
9.99

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

96
97
90

88

84

76

95
95
95
96

95
88
94
92

17

Recommendation Engine
& Graph Analysis

Recommendation engine

Alternating Least Squares - ALS

* If players like the game, they are likely to spend more time to Game Cluster RMSE
play that game.Therefore, we chose total_playtime (hours) as w X Y Z w X Y Z e
the target feature for ALS model A 45 | 20 Alisos 150 121 10| o8 v ’

L g B The Bandwagoner 80.459183

* A random subset of the cluster (50 - 60% of the original size) Q 4.0 3.5 _ 1.4/0.9 X 17,06 1.1, 04 .
could still represent the distribution of that cluster. D c 50 20 — Clis10 The Old-Fashioned 100.762091

D Dl1208 The Savvy 505.611293
* Observations with total_playtime is equal to 0 are removed 35 40 10 '
from the data before modeling, since: The Early Adopter 97.831911
* we want to reduce the size of data and TotaI_PIa'ytlme User Gam‘e The WIP 98.369387
* don’t want to bias the model with any games that no Matrix Matrix Matrix
gamer played

* Train | test split 80%, 20%
* Using 10 iterations

Run ALS on the subset of The Ordinary and The Old-Fashioned (~ 6 -7 M observations)

Top 10 recommendation games per cluster

The Ordinary (~ 48%) The Bandwagoner (~ 41%) The Old-Fashioned (~ 6.5%)
Day of Defeat 2003 Team Fortress Classic 1999 Team Fortress Classic 1999
Deathmatch Classic 2001 Day of Defeat 2003 Day of Defeat 2003
Team Fortress Classic 1999 Deathmatch Classic 2001 Counter-Strike 2000
Counter-Strike 2000 Counter-Strike 2000 Deathmatch Classic 2001
Half-Life: Opposing Force 1999 Half-Life: Opposing Force 1999 Half-Life: Opposing Force 1999
Ricochet 2000 Ricochet 2000 Ricochet 2000
Darkfall Unholy Wars 2013 Half-Life 1998 Darkfall Unholy Wars 2013
Half-Life 1998 SiN Episodes: Emergence 2006 Half-Life 1998
SiN Episodes: Emergence 2006 Peggle Extreme 2007 Peggle Extreme 2007
Peggle Extreme 2007 RIP - Trilogy 2007 SiN Episodes: Emergence 2006
The Savvy (~3%) TheVVIP (0.05%)
 ForsakenWorld 2011 Stronghold Kingdoms 2012 Mosaico 2013
Darkfall Unholy Wars 2013 _ - Fallout: New Vegas 2010
Stronghold Kingdoms 2012 Darkfall Unholy Wars 2013 RIFT 2011
Making History II: The War of the World 2010 Making History II: The War of the World 2010 APB Reloaded 2011
EVE Online 2010 EVE Online 2010 You Need a Budget 4 2012
Zen of Sudoku 2006 EVE Online 2012 Dota 2 2013
Zen of Sudoku 2006 Neverwinter 2013
Mabinogi 2012 FINAL FANTASY XIV: A Realm Reborn 2014
Vindictus 2012 Vindictus 2012 Team Fortress 2 2007

Civilization IV: Beyond the Sword 2007 Maya LT (with Stingray) 2014 Call of Duty: Modern Warfare 2 2009

Graph | Friend connection between Clusters

285782

The O‘ioned

Friend connection between Clusters

180969 O
706378 * The Ordinary and the Savvy mainly make friends within their clusters.
T , I
oA * Different from other clusters, the majority of VVIP and Early Adopter
/,;;;f’/ % friends are outside of their clusters.The Old-Fashioned are their top
<’ connection
/ _ - ; "_‘/' v o 9.
< ite oW o * Then Bandwagoner and the VVIP don’t seem to get along well
- PAREN
S
AN
O I_ A \V/
I o)
rh’hry 4—:-_7:_671_3_3_9___:] E: The BOgoner ‘ & -0
O'l e .
1780416 :. L1 370252 opportunlty g
’{,‘b
D>
AN LI ’ * Convert the Early Adopter to the VVIP
X -
N 2 * Improve recommendation engine and up-sell by identifying the
N 5 » common games of theVVIP, Early-Adopter and Old-Fashioned,
) T‘P who are in the same friend circle
636
2683

Using pygraphviz from networkx for visualization

The EOopter

41038
Base (N = ~ 7.2 M friend connections)

O Strong connection within their own cluster

Fair connection within their own cluster

21

Final Thoughts and
Conclusions

Future Considerations: Pipeline & Scheduling

& Createacluster o)
= Google Cloud Platform 8¢ My Project v

mmmmmmm

poven 1,, & & Job details C REFRESH

oo -

ccccc wte

= =) V] Ayhuydqukews

Masternode Apr 8,2020,9:18:32 PM 40 sec
e Output Configuration
h

[Line wrapping

20/04/09 04:18:37 INFO org.spark_project. jetty.util
20/04/09 04:18:37 INFO org. spark_project. jetty.serv
20/04/09 04:18:37 INFO org.spark_project. jetty.serv
20/04/09 04:18:37 INFO org.spark_project. jetty.serv

=

Code pulled from Cloud Storage Bucket

20/04/09 04:18:41 INFO org.
Pi is roughly 3.141759071417591
20/04/09 04:19:09 INFO org.sparkproject. jetty.serv

HTTP GET Deployed in Python 3.7

Job output is complete

Y

A4

Q@
Run Scheduled Job
at 6am everyday

Cloud Dataproc

™ Google Cloud Platform
Size: |7gb storage per day with snapshot build (not incremental, history not needed)
Runtime: |5 min to score |0Omil users on RandomForest Model + 10 mins to cluster user

and run ALS recommender system, run as batch process once per day to output
recommendation to Steam platform for each user = 25min total runtime per day (on RCQC)

Future Challenges:

REST API using Flask

& + € Flask

-]
< Z5N
Compute

Engine

Output Result to Cloud
Storage and Visualize
Recommendations in Flask

Validate Results and Connect
to Steam platform by
tapping into Compute Engine
API

Scale from |10mil to 95mil users

Scale to over >24GB YARN Memory (hard
limit set by GCP) with | Master + 4 Worker
nodes with highmem machines to decrease

runtimes

23

Challenges | Lessons Learned | Next Steps

Challenges

Processing Big Data on Cloud is cost
prohibitive

Not enough computing capacity on RCC

Improperly parsed data due to with multiple
delimiters

Daily Deals

@uso -

‘71717////!7/727//7?1

W//iy/;ﬂiffgg} 4

TGP
.»[&WQ &0 s X@@ !i'VA\

ViR Wk? s

TTALES FROMTHE)

7 1
 TRITALE GAMES SERIES /= Ly

-
HTSAF '&‘i

-50% = -50%

Lessons learned
* Utilize compression techniques

* Clusters behave very differently.VVIP will
eventually buy every game sold on the platform,
while bandwagoners need to be marketed
towards more strategically. Email campaigns and
Daily Deals / Flash Sales should be employed
with these groups in mind to maximize revenue

* We can utilize social networks in-platform to
recommend games to users that are popular
within their friend group or offer
discounts/bundles on 2-player/4-player games
(Savvy - Ordinary cluster relationship)

ny

Amazon EMR

O

Google Cloud Platform Cloud Dataproc

Next steps

Migrate data to cloud platform such as AWS EMR
or GCP Dataproc to scale/productionalize model

Build pipeline to automate the entire process,
add scheduling and build recommender Ul

Refactor code to use H2O Sparkling Water
library for hyperparameter tuning of classification
models

Enhance current scraper to bring in specific user
reviews for each game to incorporate as feature
word embeddings to enhance classification,
transactional data to see actual purchase prices

to recommend prices during flash sales
24

— T —

Questions!

L. 5 <V A

Thank you!

- sl

e

