DROUGHT FORECASTING AFRICAN COUNTRIES

Team Member:

- Markus Wehr
- Nazih Kalo
- Tam Nguyen
- Vineela Potula

Outline

- Problem Statement & Objectives
- Drought Classification & Data Selection
- Modeling
- ARCH/GARCH
- Conclusion & Future Work

PROBLEM STATEMENT & OBJECTIVES

Drought Impact and Prevalence

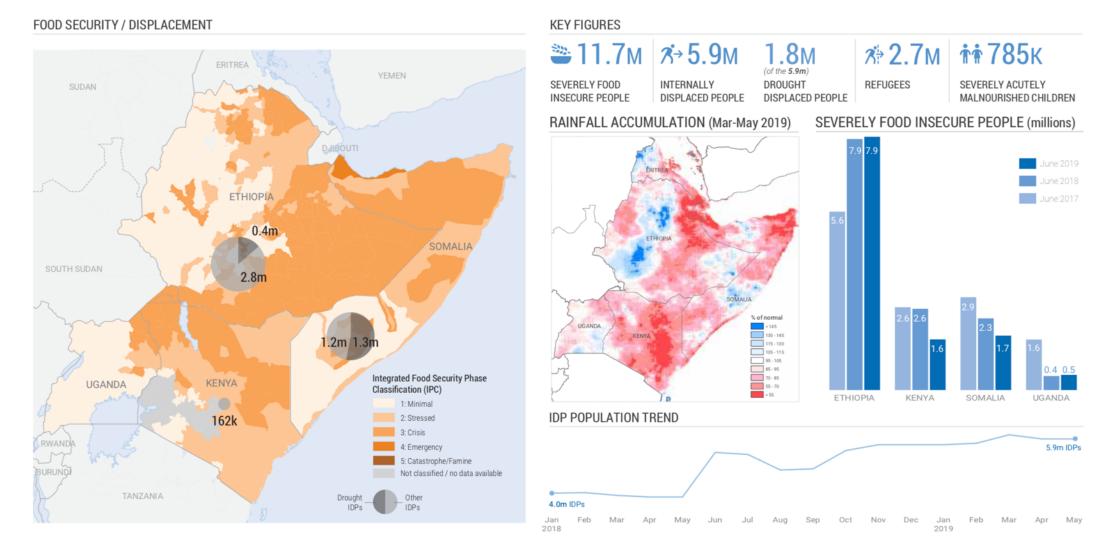
- **Concern:** Globally, droughts are the biggest concern from climate change
- Prevalence: Frequency and intensity of droughts has increased over the last century¹
- **Impact:** Since 1900 Global droughts have affected 2 billion people and lead to more than 11 million deaths.²

TOP CLIMATE CHANGE CONCERNS BY REGION

	Droughts or water shortages	Severe weather, like floods or intense storms	Long periods of unusually hot weather	Rising Sea Levels
LATIN AMERICA	59%	21%	12%	5%
AFRICA	59%	18%	16%	3%
U.S.	50%	16%	11%	17%
ASIA/ PACIFIC	41%	34%	13%	6%
MIDDLE EAST	38%	24%	19%	5%
EUROPE	35%	27%	8%	15%
GLOBAL	44%	25%	14%	6%

Note: Russia and Ukrane not included in Europe median.

Source: Spring 2015 Global Attitudes Survey. Q32


Data: Pew Research Center, November 2015,

"Global Concern about Climate Change, Broad Support for Limiting Emissions"

^[2] https://www.thefiscaltimes.com/Articles/2014/09/05/High-Cost-Droughts-Around-World

Our Focus: Horn of Africa

With the goal of maximizing the impact of our predictions we have decided to focus on the region most affected by droughts.

DROUGHT CLASSIFICATOIN & DATA SELECTION

What is a drought?

There are many definitions of a drought

"Drought is caused by not only lack of precipitation and high temperatures but by overuse and overpopulation"

David Miskus – a drought expert and meteorologist at the National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Center.

FIVE TYPES OF DROUGHT

METEOROLOGICAL drought refers to an extended period of dry weather patterns.

HYDROLOGICAL drought refers to low water supply in our rivers, lakes, aquifers, and other reservoirs that often follows meteorological drought.

AGRICULTURAL drought occurs when a water shortage significantly damages or destroys agricultural crops.

ECOLOGICAL drought is the most recently defined type of drought and refers to ecological damage caused by the lack of soil moisture.

SOCIOECONOMIC drought refers to when a water shortage affects the supply and demand of drought commodities, such as water, food grains, and fish.

Meteorological Drought Indicator: SPEI

What is SPEI?

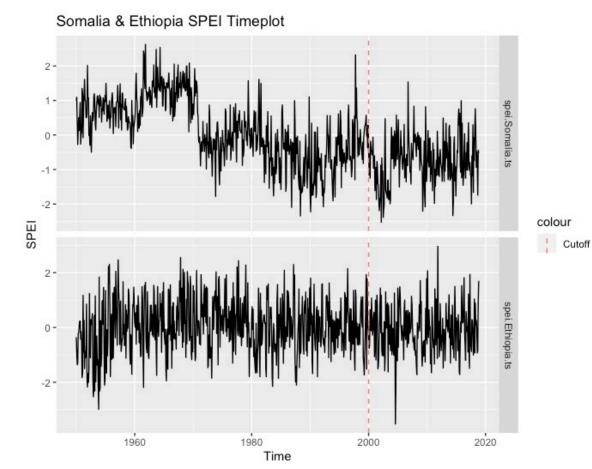
Standardized Precipitation Evapotranspiration Index¹:

- Measures drought severity according to its intensity and duration, and can identify the onset and end of drought episodes
- The lower the index, the more severe the drought (usual values range between -2 and 2)

Why choosing SPEI?

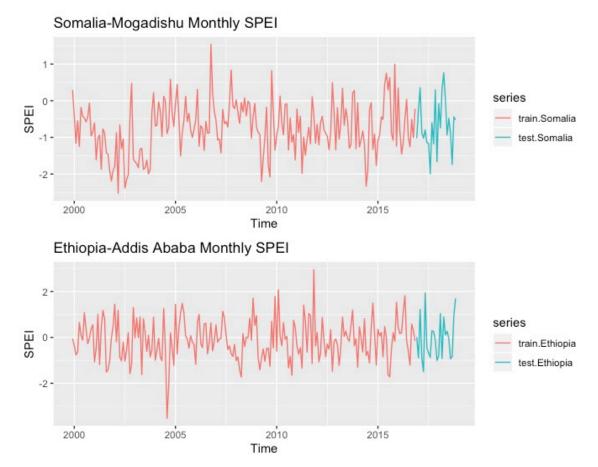
• It takes into account both **precipitation** and potential **evaporation** in determining drought, therefore, SPEI captures the main impact of increased temperatures on water demand²

Code	Classes	SPI/SPEI Interval
ew	Extreme wetness	[2, +∞[
SW	Severe wetness	[1.5, 2[
mw	Moderate wetness	[1, 1.5[
n	Normal	[-1, 1[
md	Moderate drought	[-1.5, -1[
sd	Severe drought	[-2, -1.5[
ed	Extreme drought]-∞, -2[


[3] https://www.mdpi.com/2073-4441/10/1/65/pdf

Our Data: Monthly SPEI measurements from the capitals of Somalia & Ethiopia

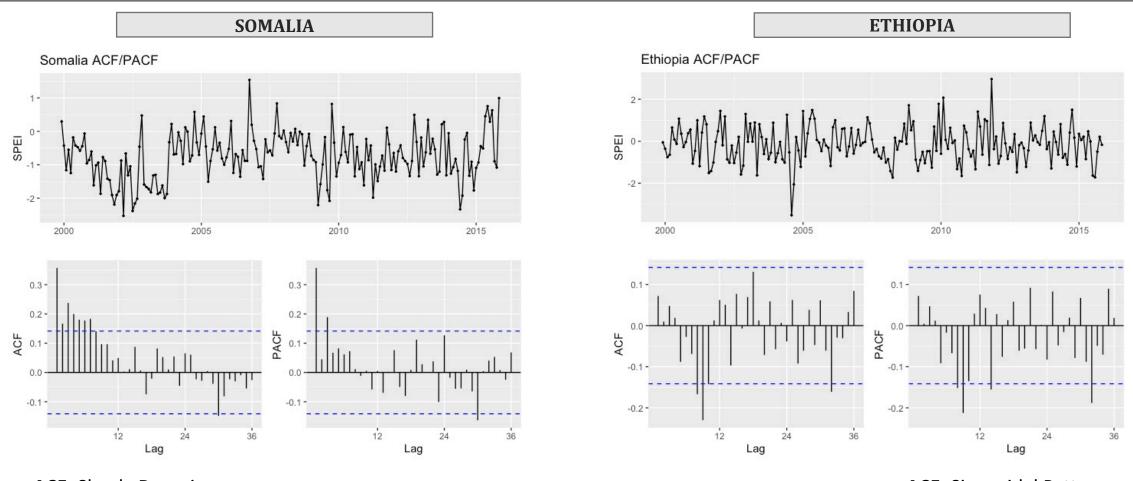
Datasource: https://spei.csic.es/home.html


Original TS:

- Clear change in level across time
- In order to control for changes in data generation process (climate change), we restricted to more recent window
- Location close to the equator makes data relatively stable

New TS window:

Timeframe: Dec-1999 to Nov-2018 (228 months=19years)Train: 1999/12 - 2016/11 | Test:2016/12 - 2018/11(204m = 17yrs) | (24m = 2yrs)



MODELING

- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

Analyzing ACF/PACF

ACF: Slowly Decaying **PACF**: Drop off after lag = 3

Stationarity Tests	Somalia	Ethiopia
KPSS Test (H0: stationary)	0.07902	0.1
ADF Test (H1: stationary)	0.01412	0.01

ACF: Sinusoidal Pattern PACF: Sinusoidal Pattern

MODELING


1. Benchmark Models

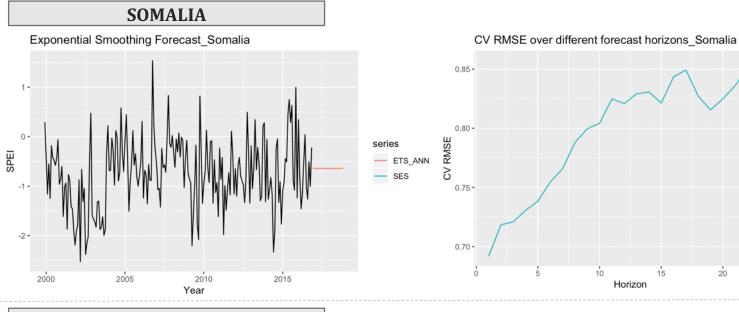
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

Benchmark Models

Year

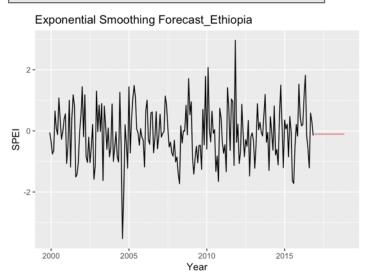
Horizon

*RMSE based on test data set


MODELING

1. Benchmark Models

- **2.** Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions



Exponential Smoothing: Simple Exponential Smoothing, ETS

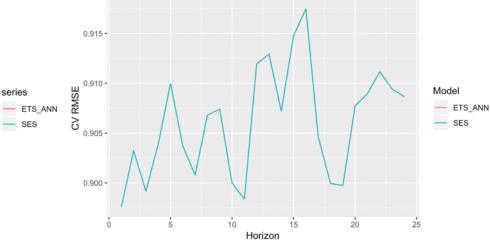
series

ETHIOPIA

CV RMSE over different forecast horizons_Ethiopia

Horizon

15


20

10

Model

- ETS_ANN

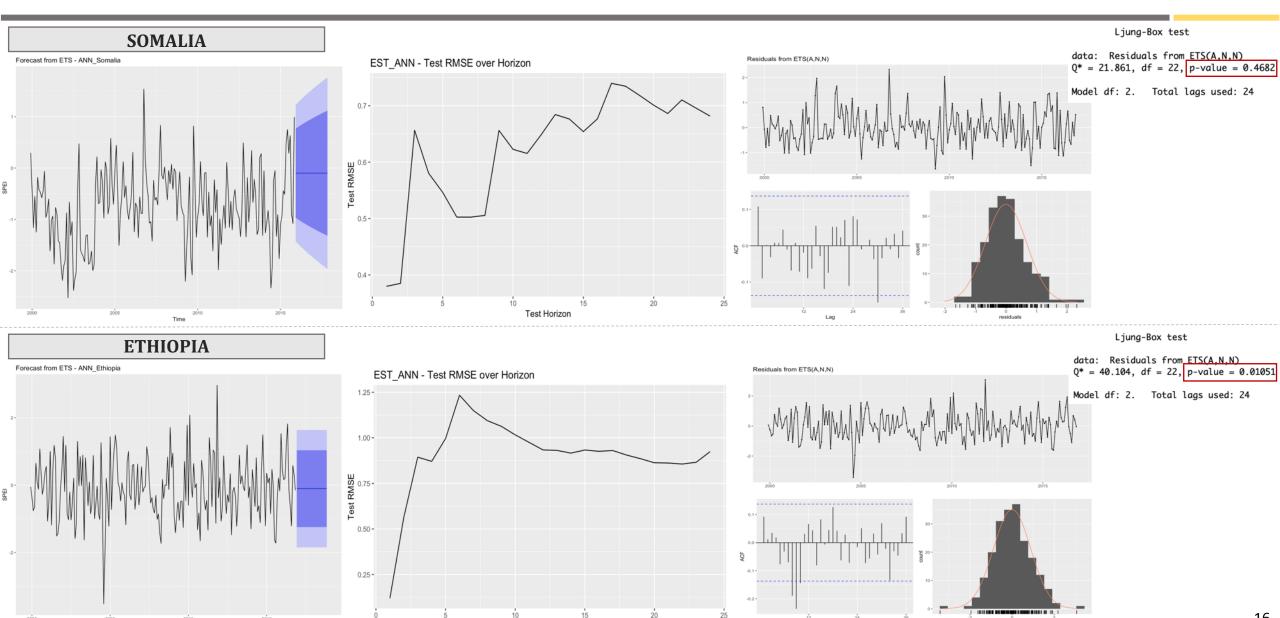
- SES

RMSE

Method <fctr></fctr>	h = 12 <fctr></fctr>	h = 24 <fctr></fctr>	AICc <fctr></fctr>
SES	0.8208	0.8528	930.0075
ETS_ANN	0.8208	0.8528	930.0075
Model Informat ETS(A,N,N) Call: ets(y = train Smoothing pa alpha = 1e	_E, model = (<u>rame</u> ters:	("ANN"))	

Method <fctr></fctr>	h = 12 <fctr></fctr>	h = 24 <fctr></fctr>	AICc <fctr></fctr>
SES	0.9119	0.9086	1041.0069
ETS_ANN	0.9119	0.9087	1041.0069

Model Information: ETS(A,N,N)


Call: ets(y = train_S, model = ("ANN"))

Smoothing parameters: alpha = 0.1883

Exponential Smoothing Model

2010 Time

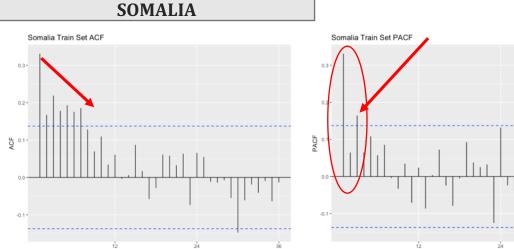
2015

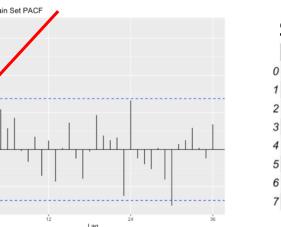
Test Horizon

residuals

Lag

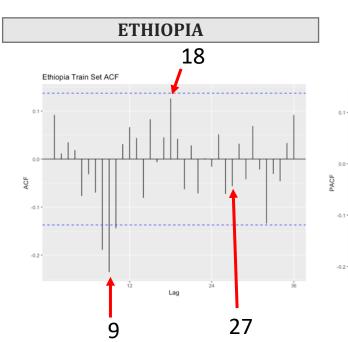
MODELING


- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS

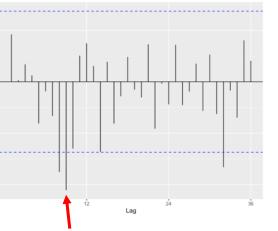

3. ARIMA, sARIMA

- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

ARIMA/sARIMA Model Selection



Somalia EACF Matrix


	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	х	x	х	x	x	x	x	0	0	0	0	0	0	0
1	х	х	0	0	0	0	0	0	0	0	0	0	0	0
2	х	x	0	0	0	0	0	0	0	0	0	0	0	0
3	x	x	0	0	0	0	0	0	0	0	0	0	0	0
			_										0	
5	х	х	0	0	0	0	0	0	0	0	0	0	0	0
6	х	x	x	x	0	0	0	0	0	0	0	0	0	0
7	0	x	x	x	0	x	0	0	0	0	0	0	0	0

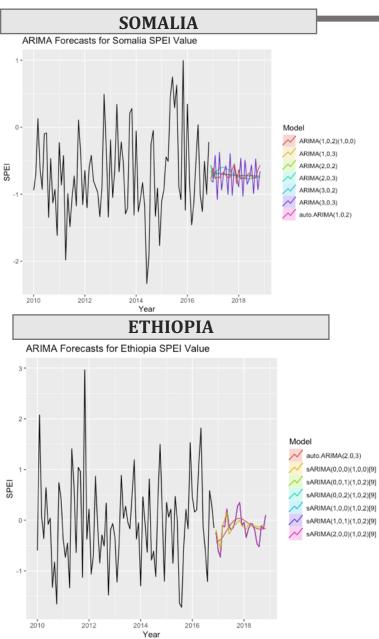
ACF:

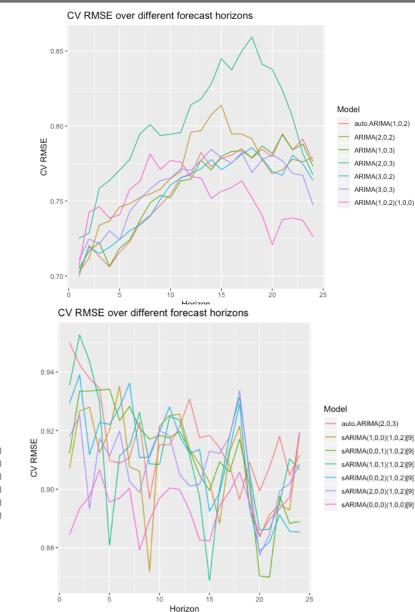
- Slow initial decay
- No clear seasonality PACF:
- Initial drop off at lag = 3
- No clear seasonality ٠ Suggests -> AR(3)

Ethiopia Train Set PACE

Ethiopia EACF Matrix 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 0 0 0 0 0 X X X 0 0 1 o o o o o o o o x o 0 хо 0 0 0 0 0 0 0 0

ACF:

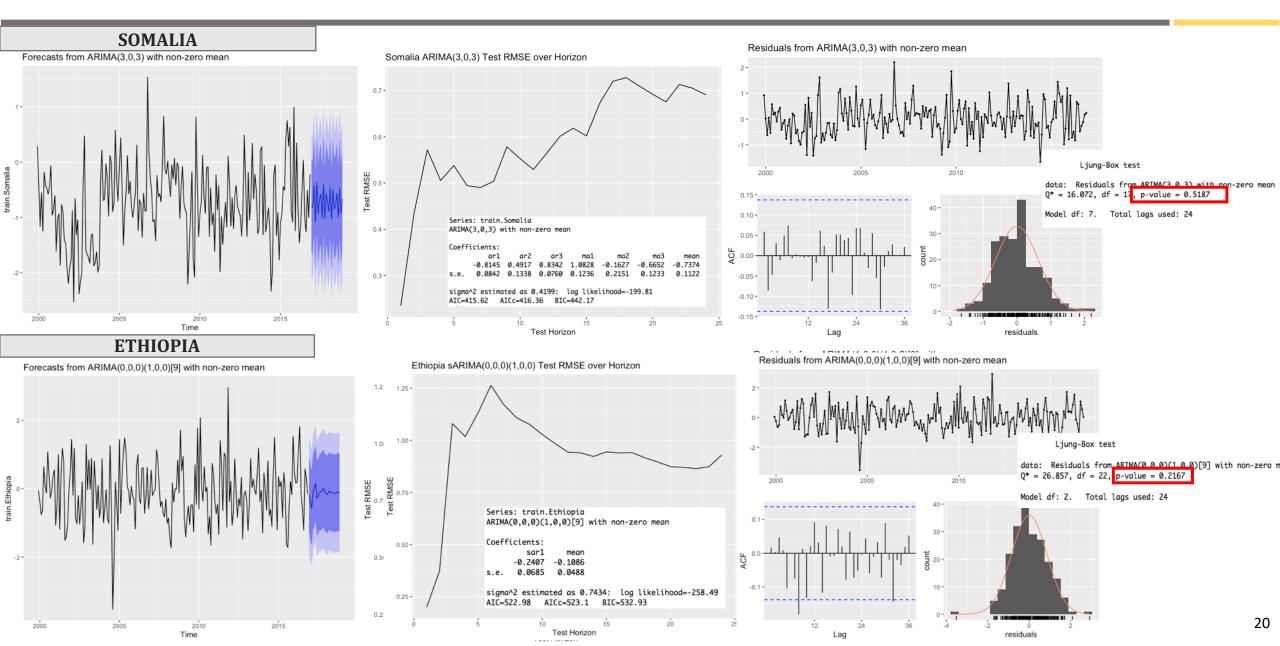

- No clear initial drop off ٠
- Seasonal lag of 9 decay ٠


PACF:

- No clear initial drop off •
- Seasonal lag of 9 drop off

Suggests -> AR(1)[9]

ARIMA/sARIMA Model Selection

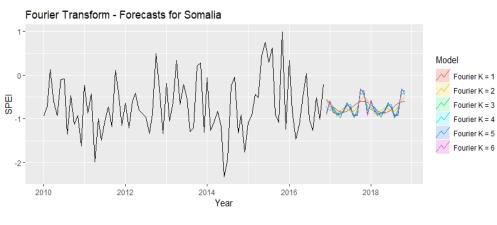


	RMSE							
		h = 12	h = 24	AICc				
aut	o.ARIMA(1,0,2)	0.7673	0.7765	417.647				
	ARIMA(2,0,2)	0.7959	0.779	418.2527				
	ARIMA(1,0,3)	0.7646	0.7733	418.0269				
	ARIMA(2,0,3)	0.8141	0.7676	419.1866				
	ARIMA(3,0,2)	0.7685	0.7639	420.2698				
	ARIMA(3,0,3)	0.7704	0.7475	416.362				
ARIN	//A(1,0,2)(1,0,0) [12	0.7662 2]	0.7264	419.4299				

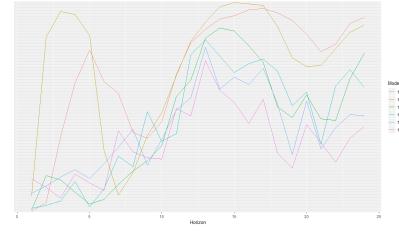
RMSE

	h = 12	h = 24	AICc
auto.ARIMA(2,0,3)	0.9214	0.9116	532.0261
sARIMA(1,0,0)(1,0,2)[9]	0.9256	0.9187	524.5112
sARIMA(0,0,1)(1,0,2)[9]	0.9198	0.889	524.5152
sARIMA(1,0,1)(1,0,2)[9]	0.9237	0.9068	526.556
sARIMA(0,0,2)(1,0,2)[9]	0.9182	0.8853	526.6347
sARIMA(2,0,0)(1,0,2)[9]	0.9051	0.9087	526.6193
sARIMA(0,0,0)(1,0,0)[9]	0.8999	0.9196	523.097

Best ARIMA/sARIMA Models


MODELING

- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

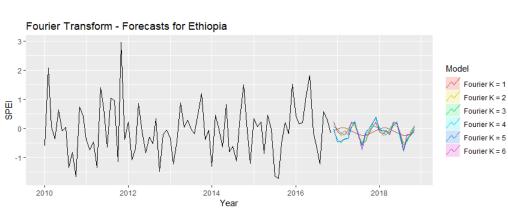


SPECTRAL ANALYSIS – Dynamic Harmonic Regression

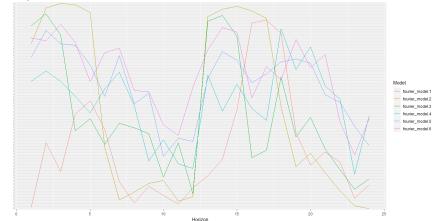
SOMALIA

Somalia - Fourier Transform Cross Validaition Errors

	h=12	h=24	AICc
fourier_model.1	0.6248099	0.7106073	419.2655
fourier_model.2	0.6217860	0.7077911	419.2325
fourier_model.3	0.5913117	0.6990945	416.0661
fourier_model.4	0.5973773	0.6808698	417.5349
fourier_model.5	0.6108730	0.6795433	419.4822
fourier_model.6	0.5997444	0.6721983	420.9704

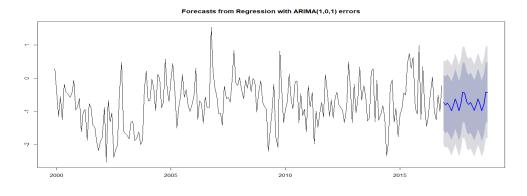

fourier_mode

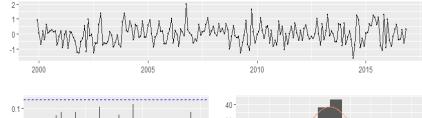
fourier_model.2 fourier_model.3


fourier_model.4 fourier_model.5

fourier_model.6

ETHIOPIA


Ethiopia - Fourier Transform Cross Validation Errors

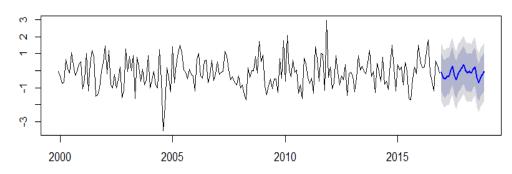

	h=12	h=24	AICc
fourier_model.1	0.9362026	0.9249248	534.9573
fourier_model.2	0.9195550	0.8944932	529.1021
fourier_model.3	0.8911184	0.8699226	532.4388
fourier_model.4	0.9008387	0.9181647	532.2842
fourier_model.5	0.8725337	0.9033669	536.2246
fourier_model.6	0.8727228	0.8935995	539.2887

SPECTRAL ANALYSIS – Best Model

SOMALIA

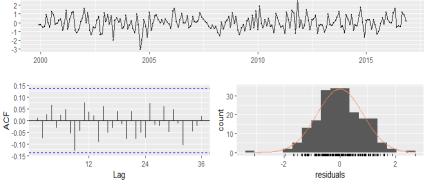
Residuals from Regression with ARIMA(1,0,1) errors

$u_{-0,1}^{0,1} - u_{-1,1}^{0,1} - u_{-$


K = 3 AICC = 416.0661

Ljung-Box test

data: Residuals from Regression with ARIMA(1,0,1) errors Q^{\star} = 26.041, df = 15, p-value = 0.0376


Model df: 9. Total lags used: 24

ETHIOPIA

Forecasts from Regression with ARIMA(2,0,3) errors

Residuals from Regression with ARIMA(2,0,3) errors

K = 4 AICC 532.2842

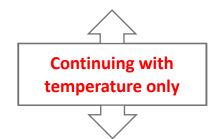
Ljung-Box test

data: Residuals from Regression with ARTMA(2,0,3) errors Q^{\ast} = 18.558, df = 10, p-value = 0.04625

Model df: 14. Total lags used: 24

MODELING

- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

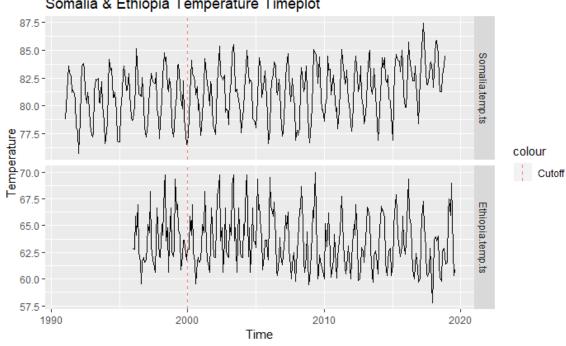

Adding additional variables

Variable	Description	Reasoning	•
Temperature	 Monthly temperature in Fahrenheit (Mogadishu & Addis Ababa) Source: https://ww w7.ncdc.noaa.gov/C DO/cdoselect.cmd 	 Temperature is non- deterministic Main driver of droughts; not directly captured by SPEI 	<u>Predictors</u> (Intercept) train.Somalia.temp.o train.Somalia.fatalit train.mei.transforme train.Somalia.food.c
Fatalities	 Monthly fatalities caused by civil unrest Source: https://www. acleddata.com/data/ 	 It has been shown that droughts can be a cause of civil unrest [1] We are interested in forecasting only, not necessarily in inference 	Observations R ² / R ² adjusted 0.50098566 -139.207 CV 5.150235e-01 -1.33186 CV 5.132213e-01 -1.33676 CV 5.124952e-01 -1.33236
ENSO Index	 ElNino/Southern Oscill iation (ENSO) - state of the tropical pacific Source: https://www. esrl.noaa.gov/psd/ens o/mei/ 	 One of the primary predictors for global climate disruption [2] Might be able to capture effects of climate change 	Predictors (Intercept) train.Ethiopia.temp.d train.Ethiopia.fataliti
	 Monthly food prices in Somali shilling (ONLY for Somalia) Source: https://data. humdata.org/group/ som Braumoeller (2017): https://doi.org/ I.noaa.gov/psd/enso/mei/ 	 Food prices are soaring as a result of droughts, especially in poorer regions [3] Again, not interested in inference 10.1177/0022343316684662) 	train.mei.transformed Observations R ² / R ² adjusted 0.77710279 -49.77960 cv 8.002418e-01 -4.51222 cv 5.150235e-01 -1.33186

		training	.Somalia	l
Predictors	Estimat	es (CI	р
(Intercept)	-0.75	-0.84	0.65	<0.001
train.Somalia.temp.diff	-0.07	-0.13	0.02	0.013
train.Somalia.fatalities.transf	ormed 0.01	-0.02	- 0.03	0.719
train.mei.transformed.diff	-0.13	-0.43	- 0.16	0.378
train.Somalia.food.diff	0.00	-0.00	-0.00	0.811
Observations	204			
R ² / R ² adjusted	0.034	0.015		
CV AIC 0.50098566 -139.20749627 -13 CV AIC 5.150235e-01 -1.331867e+02 -1. CV AIC 5.132213e-01 -1.336760e+02 -1. CV AIC 5.124952e-01 -1.332366e+02 -1.	AICC 330667e+02 -1.2 AICC 335560e+02 -1.2 AICC	BIC 37216e+02 BIC	0.024 -4.53868 -2.13219	AdjR2 8e-03 AdjR2 5e-03 AdjR2

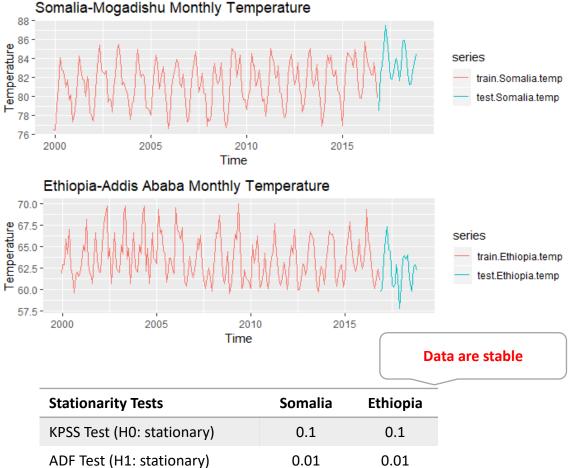
	tra	aining.Ethiopia	ı
Predictors	Estimates	CI	р
(Intercept)	-0.10	-0.22 - 0.02	0.091
train.Ethiopia.temp.diff	-0.06	-0.110.01	0.024
train.Ethiopia.fatalities.transformed	0.16	-0.05 - 0.37	0.148
train.mei.transformed.diff	-0.14	-0.50 - 0.22	0.457
Observations	204		
R ² / R ² adjusted	0.040 / 0	.026	
8.002418e-01 -4.512225e+01 -4.500225	3 -39.82524 AICC e+01 -3.516 AICC	BIC 789e+01 4.15993 BIC	AdjR2 L2e-04 AdjR2

- Lowest AICc for temperature (-139.09)
- Temperature is the only significant variable (1%level)
- Low R-squared

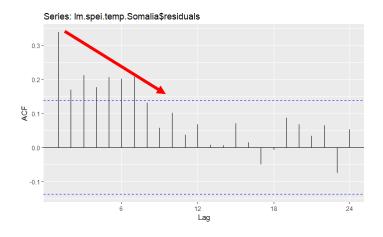

- Lowest AICc for temperature (-49.66)
- Temperature is the only significant variable (5%level)
- Low R-squared

[3] Hill, Fuje (2018): https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=CSAE2018&paper_id=746

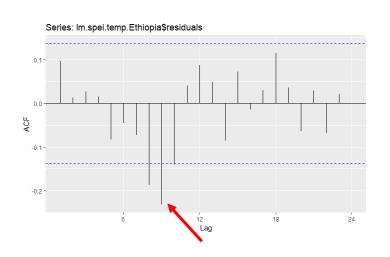
Temperature as explanatory variable

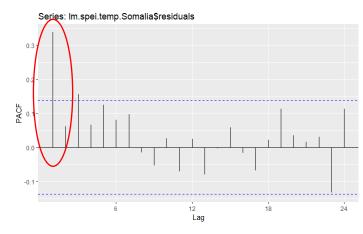

Original TS:

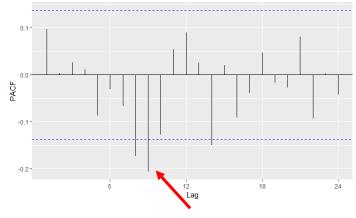
- Shows seasonality (seasons), however, location close to the equator makes data relatively stable
- No trend


Somalia & Ethiopia Temperature Timeplot

New TS window: Timeframe: Dec-1999 to Nov-2018 (228 months) **Train:** 1999/12 - 2016/11 | **Test:** 2016/12 - 2018/11

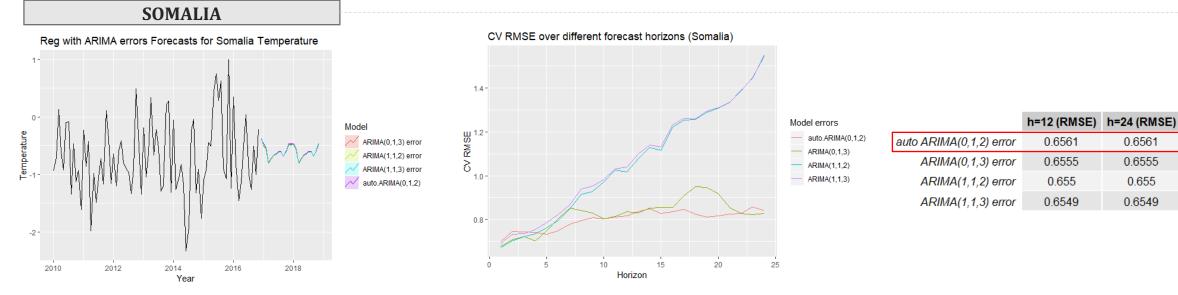



Regression with ARIMA error

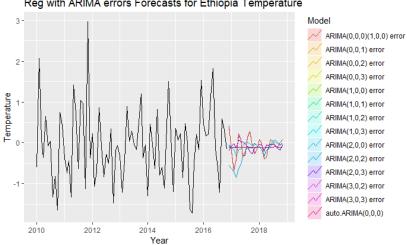

SOMALIA (Regression residuals)

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 1 0 x x o o o o o o o o o o o o 1 x x o o o o o o o o o o o o o							
Regression residuals							
 ACF: slowly decaying PACF: clear drop off at lag 2 	First-order differencing						
Stationarity Tests	Somalia residuals						
KPSS Test (H0: stationary)	0.0467						
ADF Test (H1: stationary)	0.0174						

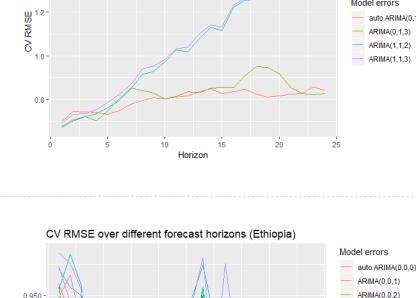
AI	R/M	٩A												
											10			
0	0	0	0	0	0	0	0	х	х	0	0 0 0 0	0	ο	0
1	0	0	0	ο	ο	0	0	0	0	х	0	0	0	0
2	0	х	0	ο	о	0	0	0	0	0	0	0	0	0
3	х	х	0	0	о	0	0	0	0	0	0	0	0	0
											0			


Regression residuals

- ACF and PACF show sinusoidal pattern
- No clear drop off or decay


Stationarity Tests	Ethiopia residuals
KPSS Test (H0: stationary)	0.1
ADF Test (H1: stationary)	0.01

27


Regression with ARIMA error (cont.)

ETHIOPIA

Reg with ARIMA errors Forecasts for Ethiopia Temperature

		h=12 (RMSE)	h=24 (RMSE)	AICc
au	to ARIMA(0,0,0) error	0.8842	0.8842	532.7804
	ARIMA(0,0,1) error	0.8766	0.8766	533.3825
	ARIMA(0,0,2) error	0.8765	0.8765	535.4715
	ARIMA(0,0,3) error	0.8763	0.8763	537.488
	ARIMA(1,0,0) error	0.8765	0.8765	533.3613
	ARIMA(1,0,1) error	0.8765	0.8765	535.4599
	ARIMA(1,0,2) error	0.8765	0.8765	537.5658
	ARIMA(1,0,3) error	0.8762	0.8762	539.6009
	ARIMA(2,0,0) error	0.8765	0.8765	535.4616
	ARIMA(2,0,2) error	0.8378	0.8378	524.8566
	ARIMA(2,0,3) error	0.8635	0.8635	536.2324
	ARIMA(3,0,2) error	0.8485	0.8485	532.9033
	ARIMA(3,0,3) error	0.8472	0.8472	534.5732
	ARIMA(0.0.0)(1.0.0)	0.8549	0.8549	523.6917

	\mathcal{N}		A A		_	auto.ARIMA(0,0,0)
	MN I	/	A A -		_	ARIMA(0,0,1)
0.950 -						ARIMA(0,0,2)
		$\Lambda \Lambda M$			_	ARIMA(0,0,3)
	AN -	\sqrt{N}		/		- ARIMA(1,0,0)
В		V ////////////////////////////////////	WX VI		_	- ARIMA(1,0,1)
BW2 0.925		X/V/ 🚺	AN AN		_	ARIMA(1,0,2)
S 0.925					_	ARIMA(1,0,3)
-		K 🔏		MD ANG	_	ARIMA(2,0,0)
		X //		V i v	_	ARIMA(2,0,2)
				V ZV	_	ARIMA(2,0,3)
0.900 -			_/		_	ARIMA(3,0,2)
		$\sim \sim$		\sim	_	ARIMA(3,0,3)
	V V				_	ARIMA(0,0,0)(1,0,0)
0	5	10	15	20	25	
		Horizon				

AICc

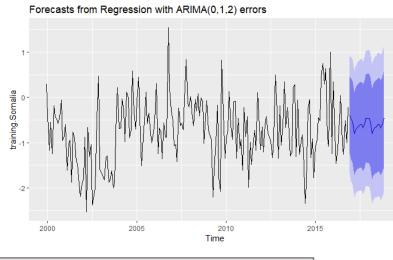
415.4093

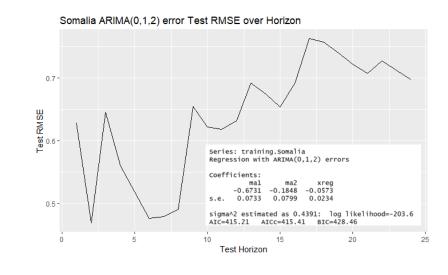
417.0457

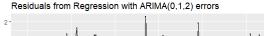
416.7848

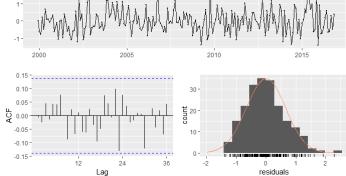
418.8559

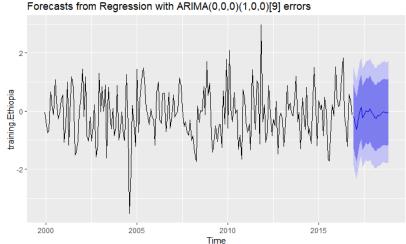
0.6561

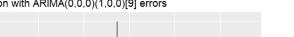

0.6555

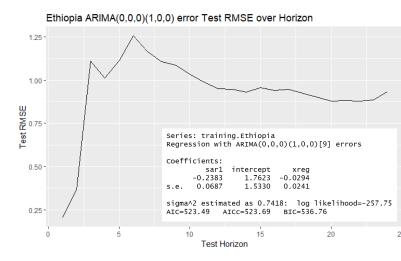

0.655

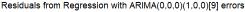

0.6549

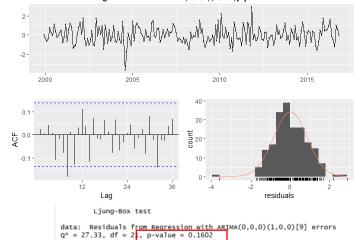

Regression with ARIMA error (cont.)

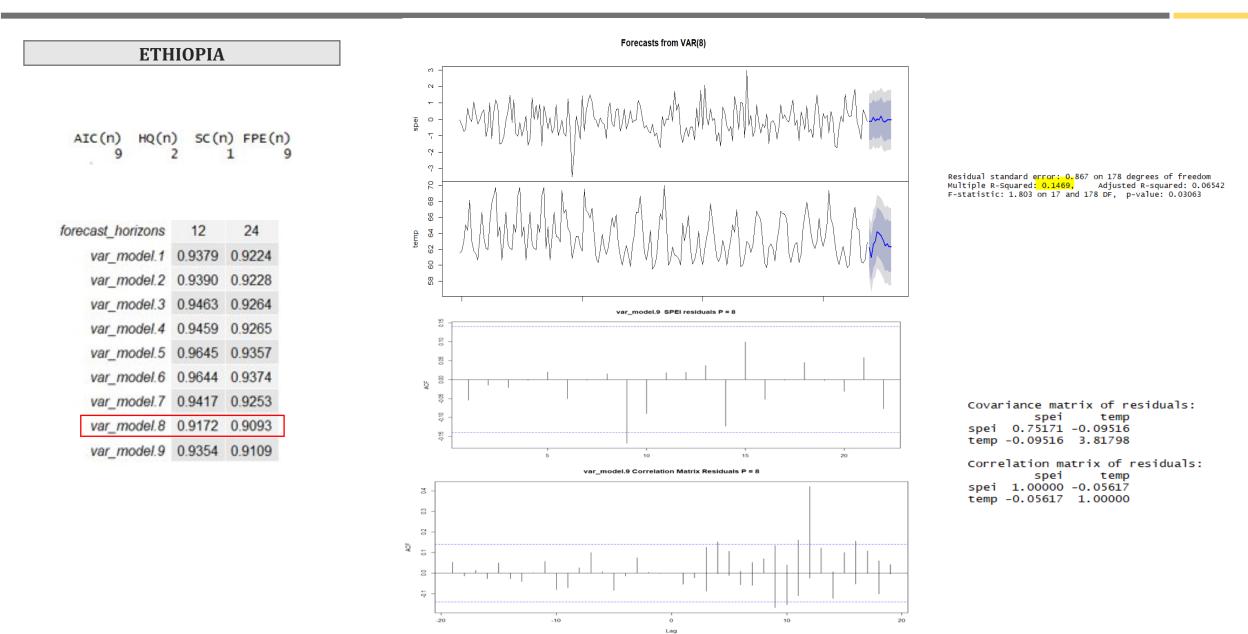



Ljung-Box test


data: Residuals from Regression with ARIMA(0,1,2) errors Q^{\star} = 19.474, df = 21 p-value = 0.5547


Model df: 3. Total lags used: 24


ETHIOPIA



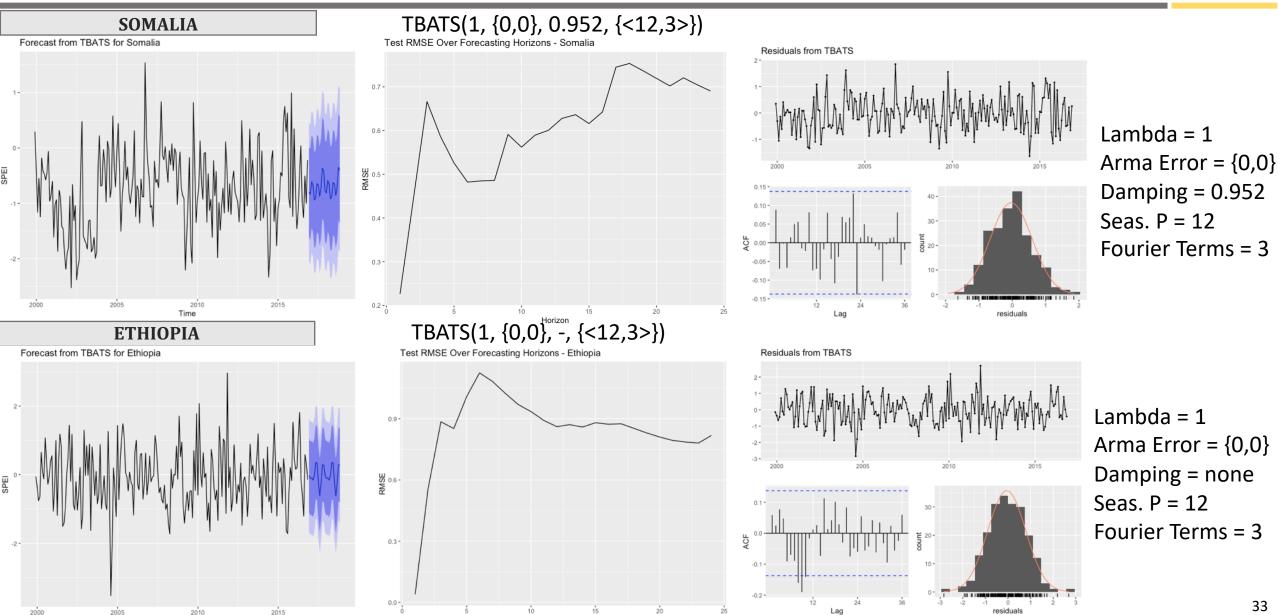
Model df: 3. Total lags used: 24

VAR

	SOMA	LIA	Forecasts from VAR(6)		SPEI residuals P = 6
AIC(n) HQ(n) 10 - 1		FPE(n) 10	~ - My My My My My	MMMMMMMM a	
forecast_horiz	12	24	8- 8-		
var_model.1	0.6938	0.7044	<u>s</u> ≈- ∧ ∧ / / / / / / / / / / / / / /		2
var_model.2	0.7019	0.6961			۶
var_model.3	0.6845	0.6925	2000 2005 2010	2015	5 10 15 20
var_model.4	0.6751	0.7017	2000 2005 2010 time	פועג	Lag
var_model.5	0.6880	0.6928			
var_model.6	0.6717	0.6959			Correlation Matrix Residuals P = 6
var_model.7	0.6763	0.6986	Residual standard error: 0.6637 on 1 Multiple R-Squared: <mark>0.199, </mark>	sted R-squared: 0.1424	3 -
var_model.8	0.6790	0.7118		:	3 -
var_model.9	0.7030	0.7081		:	N -
			Covariance matrix o spei temp spei 0.4405 -0.195 temp -0.1950 1.871 Correlation matrix spei tem spei 1.0000 -0.214 temp -0.2147 1.000	of residuals:	$5 - \frac{1}{9} - $

VAR

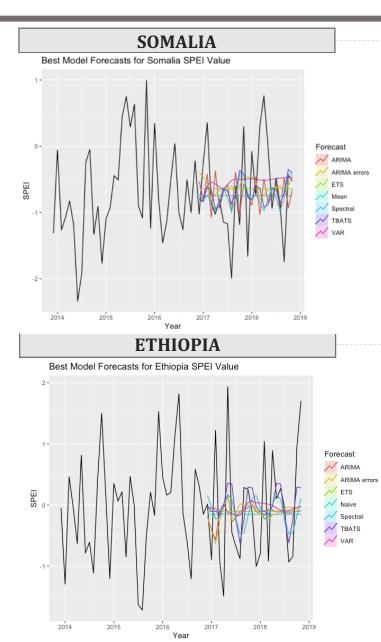
31

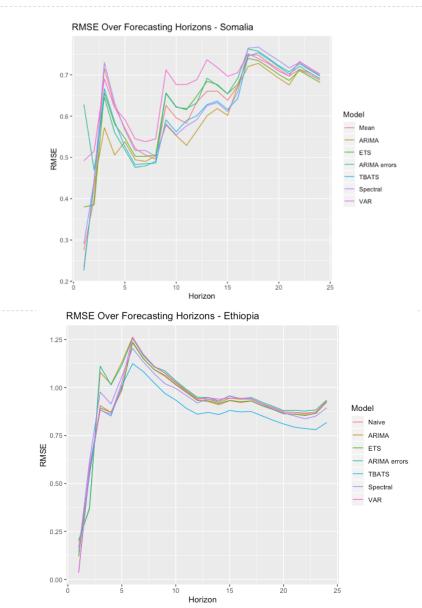

MODELING

- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

TBATS

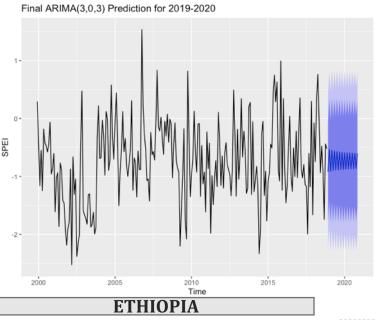
Time


Horizon

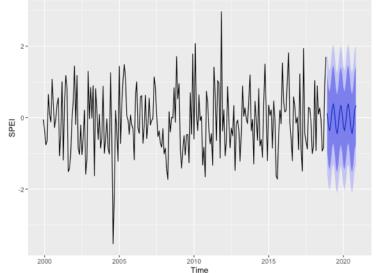

MODELING

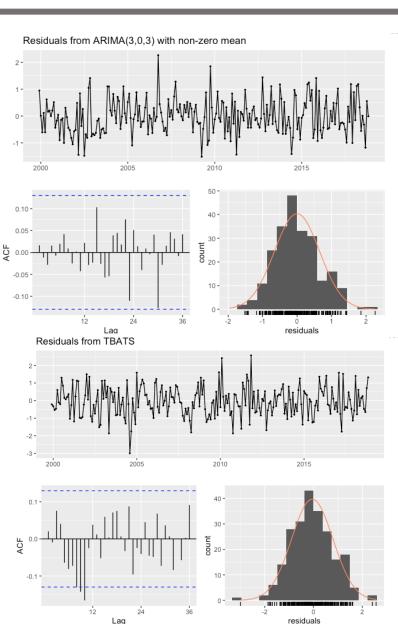
- 1. Benchmark Models
- 2. Exponential Smoothing:
 - Simple Exponential Smoothing (SES)
 - ETS
- 3. ARIMA, sARIMA
- 4. Spectral Analysis
- 5. VAR, Regression with ARIMA error
- 6. TBATS
- 7. Model Selection & Final Predictions

Model Selection



	h=12	h=24	Mean
Mean	0.6341	0.6871	0.6214
ARIMA	0.5644	0.6907	0.5885
ETS	0.6486	0.6817	0.6234
ARIMA errors	0.6318	0.6969	0.6387
TBATS	0.6007	0.6906	0.6059
Spectral	0.5913	0.6991	0.6209
VAR	0.688	0.7017	0.6633


		h=12	h=24	Mean
	Naive	0.9328	0.928	0.9045
	ARIMA	0.9429	0.9299	0.9283
	ETS	0.9335	0.9244	0.9046
ARIM	A errors	0.9497	0.9339	0.9338
	TBATS	0.861	0.8178	0.844
5	Spectral	0.9196	0.8945	0.909
	VAR	0.9388	0.9239	0.9121


2019-2020 Predictions

SOMALIA

Final TBATS Prediction for 2019-2020

Code	Classes	SPI/SPEI Interval al
ew	Extreme wetness	[2, +∞[
SW	Severe wetness	[1.5, 2[
mw	Moderate wetness	[1, 1.5]
n	Normal	[-1, 1[
md	Moderate drought	[-1.5, -1[
sd	Severe drought	[-2, -1.5[
ed	Extreme drought]-∞, -2[

Ljung-Box test

data: Residuals from ARIMA(3,0,3) with non-zero mean $Q^* = 12.452$, df = 17, p-value = 0.7721

Model df: 7. Total lags used: 24

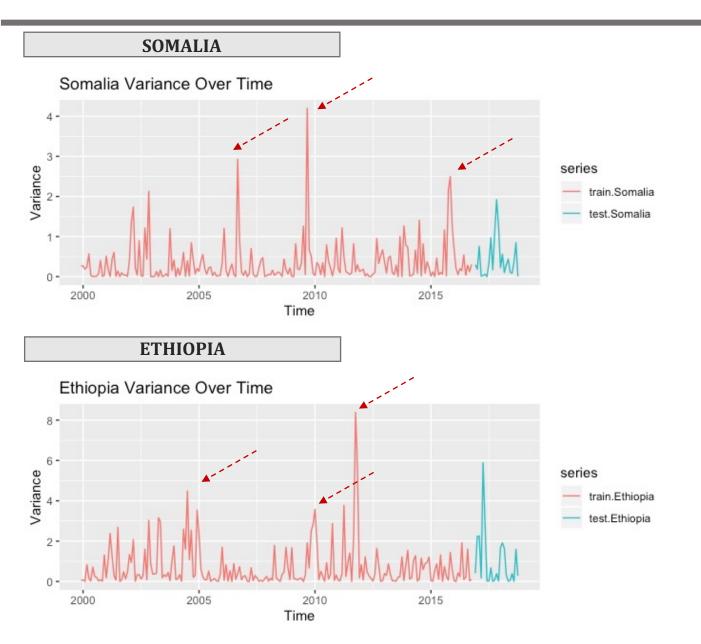
	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
Aug 2019	-0.8872	-1.7978	0.0235	-2.2799	0.5056	
Aug 2020	-0.868	-1.7846	0.0485	-2.2698	0.5337	

Severe Drought Puts 2 Million Somalis at Starvation Risk

Mohamed Sheikh ly 28, 2019 01:02 PM

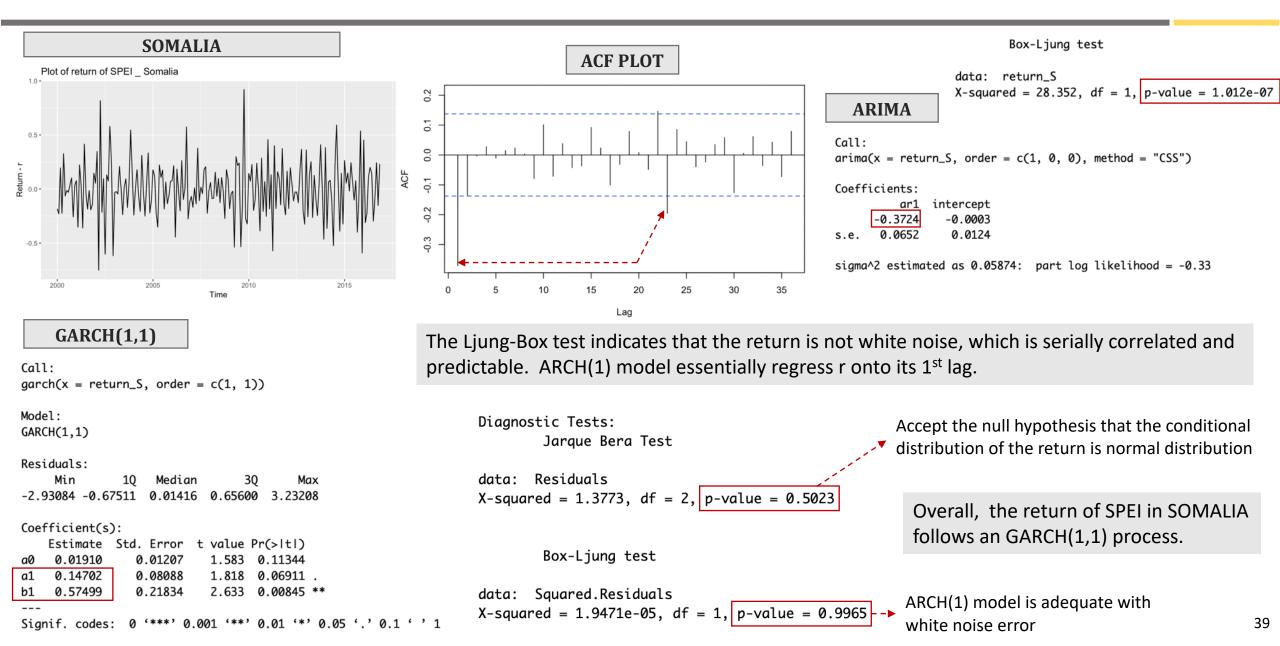
Ljung-Box test

data: Residuals from TBATS Q* = 31.024, df = 16, p-value = 0.01336

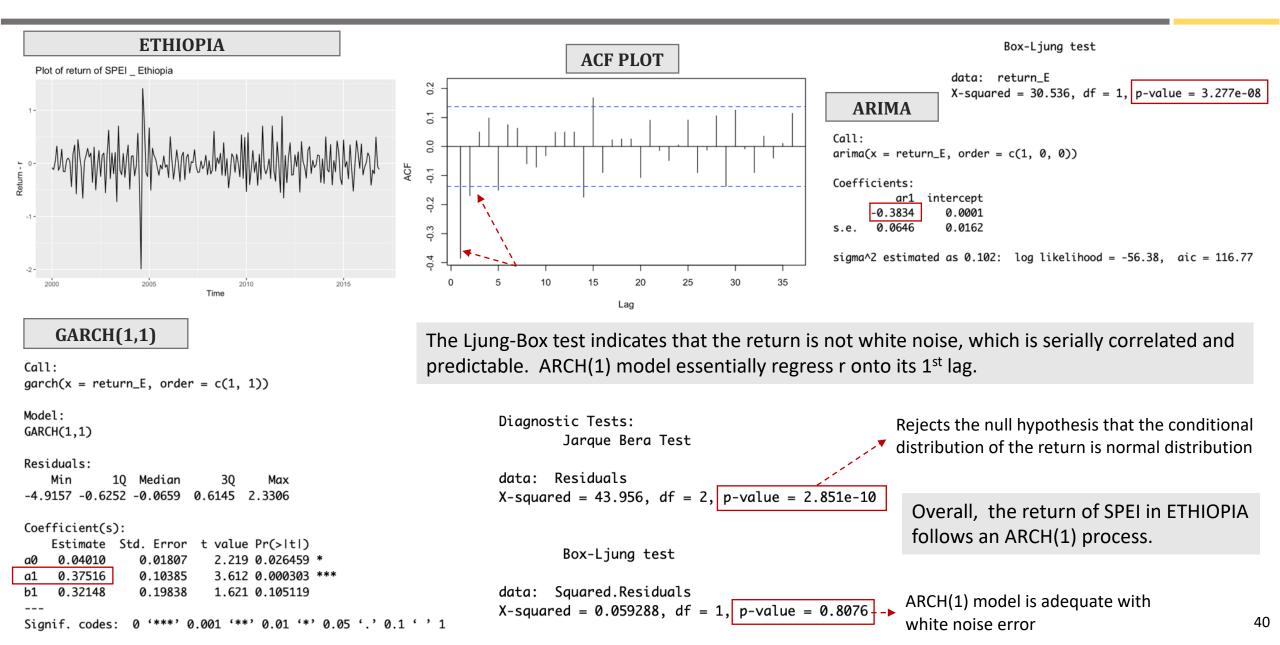

Model df: 8. Total lags used: 24

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Aug 2019	-0.4446	-1.5327	0.6435	-2.1087	1.2195
Aug 2020	-0.4446	-1.5337	0.6445	-2.1103	1.2211

ARCH/GARCH

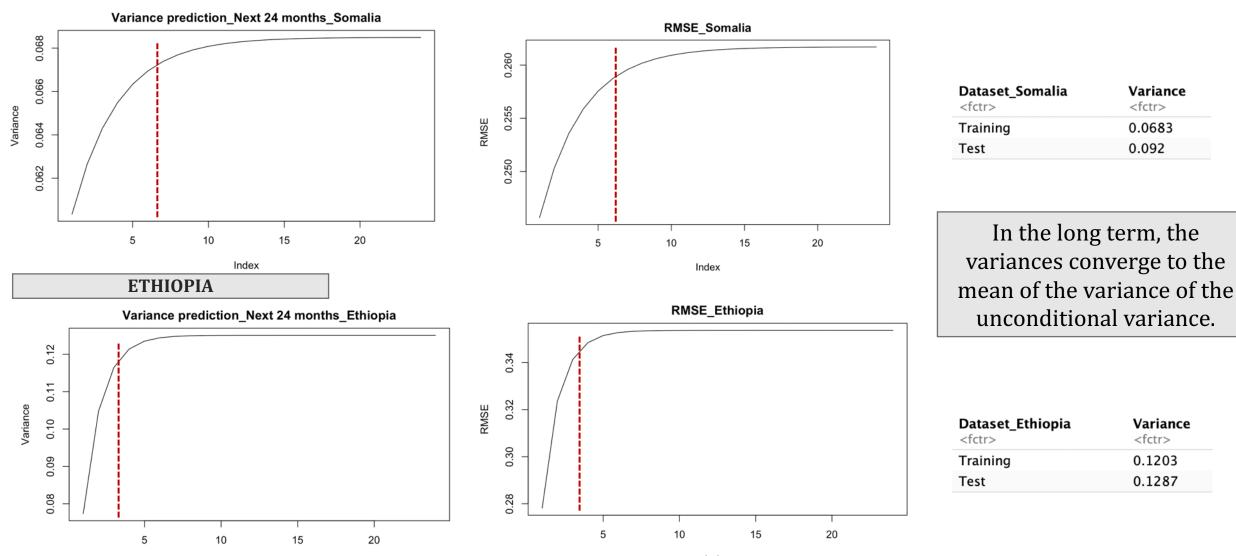


Variance Over Time



High variance of SPEI in both Somalia and Ethiopia over the period suggests that ARCH/ GARCH model would be a good choice in forecasting drought.

ARCH/GARCH – Somalia



ARCH/GARCH – Ethiopia

ARCH/GARCH – Forecasting

SOMALIA

Index

Index

CONCLUSION & FUTURE WORK

Best models:

- Somalia: ARIMA(3,0,3)
- Ethiopia: TBATS

Why is forecasting SPEI difficult?

- SPEI patterns are close to white noise
- Weather patterns are some of the most complex & difficult to model
- SPEI index is composed multiple attributes, each of which is prone to external influences

What future work is needed?

- Get more/better cross-sectional data to improve explanatory power
- Model SPEI for more regions in the world to see what models apply to different environments

THANK YOU!

APPENDIX

References

- Temperature Data:
 - <u>https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd</u>
- SPEI Data
 - <u>https://spei.csic.es</u>
- Conflict/Fatalities Data
 - <u>https://www.acleddata.com/data/</u>
- Food Price Data
 - <u>https://data.humdata.org/group/som</u>
 - <u>https://data.humdata.org/group/eth</u>
- Visuals
 - <u>https://reliefweb.int/sites/reliefweb.int/files/resources/HoA_Humanitarian_Snapshot_21June2019f.pdf</u>
 - <u>https://reliefweb.int/sites/reliefweb.int/files/resources/HOA_drought_updates_snapshot_Mar2017_latest.p_df</u>
 - https://reliefweb.int/sites/reliefweb.int/files/resources/HOA_drought_updates_snapshot_Nov032017.pdf